Récurrence et étude de suites, cours, terminale, spécialité Mathématiques

F.Gaudon

20 septembre 2020

Table des matières

1	Démonstration par récurrence	2
2	Étude de suites	3
	2.1 Suites majorées, minorées, bornées	3
	2.2 Étude de variations de suites récurrentes	3

1 Démonstration par récurrence

Axiome de récurrence :

Soit P(n) une propriété qui dépend d'un nombre entier naturel n et soit n_0 un nombre entier naturel. Si la propriété P(n) vérifie les deux conditions suivantes :

- Initialisation : $P(n_0)$ est vraie;
- Hérédité : Si P(k) est vraie pour un nombre entier naturel $k \ge n_0$ alors P(k+1) est vraie ;

Alors pour tout nombre entier naturel $n \ge n_0$, P(n) est vraie.

Exemple 1:

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel n par $u_{n+1} = u_n + 2n + 3$. Montrons par récurrence que pour tout entier naturel n, $u_n = (n+1)^2$.

Initialisation : Pour n = 0, $(0+1)^2 = 1 = u_0$ donc la propriété est vraie au rang n = 0.

Hérédité : Supposons que pour un rang k entier naturel, on a $u_k = (k+1)^2$.

Alors $u_{k+1} = u_k + 2k + 3$ par construction.

Donc $u_{k+1} = (k+1)^2 + 2k + 3$ par hypothèse de récurrence.

Puis $u_{k+1} = k^2 + 2k + 1 + 2k + 3 = k^2 + 4k + 4 = (k+2)^2$.

Donc $u_{k+1} = (k+1+1)^2$, c'est à dire que la propriété est vraie au rang k+1 donc qu'elle est héréditaire.

Conclusion: Pour tout entier naturel n, $u_n = (n+1)^2$.

Exemple 2:

Soit (u_n) la suite définie par $u_1 = 10$ et pour tout entier naturel n par $u_{n+1} = 1 + \frac{1}{2}u_n$. Montrons par récurrence que pour tout entier naturel n non nul, $u_n > 2$.

Initialisation : $u_1 = 10$ donc $u_1 > 2$, la propriété est donc vraie au rang 1.

Hérédité : On suppose que pour un rang k non nul, la propriété est vraie, c'est à dire que $u_k > 2$.

Il faut montrer que $u_{k+1} > 2$.

Or $u_{k+1} = 1 + \frac{1}{2}u_k$ par construction de la suite.

Puis, par hypothèse de récurrence, $u_k > 2$ donne $\frac{1}{2}u_k > \frac{1}{2} \times 2$ c'est à dire $\frac{1}{2}u_k > 1$.

Puis $\frac{1}{2}u_k + 1 > 1 + 1$ soit $\frac{1}{2}u_k + 1 > 2$.

C'est à dire $u_{k+1} > 2$. La propriété est donc vraie au rang k+1. Elle est donc héréditaire.

Conclusion: Pour tout entier naturel n non nul, $u_n > 2$.

Exemple 3:

Démontrons la propriété suivante : Si u est une fonction définie et dérivable sur un intervalle I, alors pour tout entier naturel $n \ge 1$, alors u^n est dérivable sur I et $(u^n)' = nu'u^{n-1}$.

- Initialisation : pour $n=1, u'=1 \times u' \times u^{1-1}$ donc la propriété est vraie au rang 1.
- Hérédité : Supposons la propriété vraie pour un certain rang $k \geq 1$, c'est à dire que u^k est dérivable sur I et que $(u^k)' = ku'u^{k-1}$.

Alors $u^{k+1} = u^k \times u$ donc, u^k et u étant dérivables, le produit u^{k+1} est dérivable sur I.

Par ailleurs, $(u^{k+1})' = (u^k)' \times u + u^k \times u'$ d'après la formule de dérivation des produits.

Donc $(u^{k+1})' = ku'u^{k-1} \times u + u^k \times u'$ par hypothèse de récurrence

Finalement, on a donc $(u^{k+1})' = ku'u^{k} + u'u^{k} = (k+1)u'u^{k}$ ce qui est l'écriture de la propriété au rang k+1: la propriété est donc vraie au rang k+1 et donc héréditaire.

• Conclusion : d'après l'axiome de récurrence, la propriété est donc vraie pour tout rang $n \ge 1$.

2 Étude de suites

2.1 Suites majorées, minorées, bornées

Définition:

Soit (u_n) une suite définie à partir d'un certain rang $p \in \mathbb{N}$. (u_n) est dite :

- $major\acute{e}$ à partir du rang p s'il existe un réel M tel que pour tout entier naturel $n \geq p, u_n \leq M$;
- $minor\acute{e}$ à partir du rang p s'il existe un réel m tel que pour tout entier naturel $n \geq p, u_n \geq m$;
- $born\acute{e}$ à partir du rang p si elle est majorée et minorée à partir du rang p.

Exemple:

Suite définie en fonction de n: Soit (u_n) la suite définie par $u_n = 3 - \frac{4}{n}$ pour tout entier naturel n non nul.

Alors pour tout $n \in \mathbb{N}$, $u_n - 3 = -\frac{4}{n}$ d'où $u_n - 3 < 0$ c'est à dire $u_n < 3$. La suite (u_n) est donc majorée par 3.

Suite définie par récurrence : Soit (u_n) la suite définie par $u_0 = 0$ et pour tout entier naturel n, $u_{n+1} = \sqrt{u_n + 5}$.

Montrons par récurrence que pour tout entier naturel $n \geq 1$, $0 \leq u_n \leq 3$.

- Initialisation : Pour n = 1, $u_1 = \sqrt{u_0 + 5} = \sqrt{5} < 3$ donc $0 \le u_1 \le 3$.
- Hérédité : Supposons que pour un rang $k \ge 1$, $0 \le u_k \le 3$. Soit f la fonction définie sur $]-5;+\infty[$ par $f(x)=\sqrt{x+5}$. On a $f'(x)=\frac{1}{2\sqrt{x+5}}>0$ donc f est croissante sur $]-5;+\infty[$.

Comme $f(0) = \sqrt{5}$ et $f(3) = \sqrt{8} < 3$, on a donc pour tout $x \in [0, 3]$, $f(x) \in [0, 3]$.

De $0 \le u_k \le 3$, on déduit donc $0 \le f(u_k) \le 3$, c'est à dire $0 \le u_{k+1} \le 3$, la propriété est donc héréditaire.

• Conclusion : par l'axiome de récurrence, on a obtient donc pour tout $n \ge 1, 0 \le u_n \le 3$.

2.2 Étude de variations de suites récurrentes

Exemple:

On considère la suite (u_n) définie par $u_0 = 3$ et $u_{n+1} = 0, 3u_n + 1$.

Soit f la fonction définie sur \mathbb{R} par f(x) = 0, 3x + 1. f est strictement *croissante* sur \mathbb{R} .

Montrons par récurrence que (u_n) est une suite strictement *décroissante*, c'est à dire que pour tout entier naturel n, $u_n < u_{n-1}$

- Initialisation : $u_1 u_0 = 0, 3 \times 3 + 1 3 = -1, 1 < 0$;
- Hérédité : on suppose que pour un rang $k \ge 1$, $u_k < u_{k-1}$. Alors $u_k < u_{k-1}$ et, par stricte croissance de la fonction f, $f(u_k) < f(u_{k-1})$, c'est à dire $u_{k+1} < u_k$. Par conséquent, la propriété est vraie au rang k+1 et est donc héréditaire.
- Conclusion : Par récurrence, on donc pour tout $n \ge 1$, $u_n < u_{n-1}$, c'est à dire que la suite (u_n) est décroissante.

