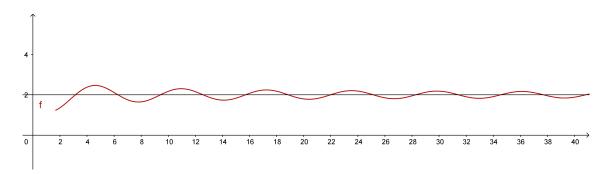
Limites de fonctions, cours, terminale, spécialité mathématiques

1 Limites finies à l'infini

Soit f une fonction définie sur un intervalle $[a; +\infty[$ ou $]-\infty; a]$ suivant le cas avec $a \in \mathbb{R}$. **Définition :**

On dit aussi que f(x) tend vers l quand x tend vers $+\infty$ (resp. tend vers $-\infty$).



Propriété:

- $\lim_{x\to+\infty} \frac{1}{x} = \dots$ et $\lim_{x\to-\infty} \frac{1}{x} = \dots$
- Pour tout entier naturel k non nul , $\lim_{x\to +\infty} \frac{1}{x^k} = \dots$ et $\lim_{x\to -\infty} \frac{1}{x^k} = \dots$
- Pour tout réel k, $\lim_{x \to +\infty} \frac{1}{x-k} = \dots$ et $\lim_{x \to -\infty} \frac{1}{x-k} = \dots$
- $\lim_{x\to-\infty} e^x \stackrel{x^{-n}}{=} \dots$

Définition:

Soit $l \in \mathbb{R}$ et soit \mathcal{C} la courbe représentative d'une fonction f dans un repère.

Exemples:

 $\lim_{x \to +\infty} \frac{1}{x} = \dots$ et $\lim_{x \to -\infty} \frac{1}{x} = \dots$

donc la droite d'équation est une asymptote horizontale à l'hyperbole en $+\infty$ et en $-\infty$.

2 Limites infinies à l'infini

Définition:

f admet pour limite $+\infty$ en $+\infty$ (resp. $-\infty$ en $+\infty$) si pour tout intervalle $]M; +\infty[$ (resp. $]-\infty;M]$) où M est un réel, il existe un réel x_0 tel que pour tous les réels x supérieurs à $x_0, f(x) \in]M; +\infty[$ (resp. $f(x) \in]-\infty;M]$).

On note alors (resp.).

On dit aussi que f(x) tend vers $+\infty$ (resp. tend vers $-\infty$) quand x tend vers $+\infty$.

Remarque:

On définit de même les limites en $-\infty$.

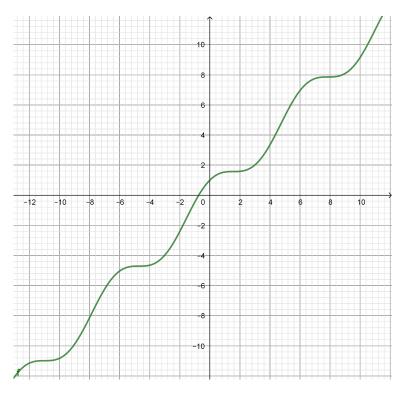
Remarque:

On définit de même les limites en $-\infty$.

Remarque:

Limites et monotonie ne sont, en général, pas liées. On peut montrer que pour la fonction :

 $f: x \mapsto x + \cos(x)$ on a: $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} f(x) = -\infty$ mais que cette fonction n'est pourtant pas croissante.



Propriétés :

- Pour tout entier naturel k non nul, $\lim_{x\to+\infty} x^k = \dots$
- $\lim_{x\to-\infty} x = \dots$
- $\lim_{x\to-\infty} x^2 = \dots$
- $\bullet \lim_{x \to -\infty} x^3 = \dots$
- $\lim_{x\to+\infty} \sqrt{x} = \dots$
- $\lim_{x\to+\infty} e^x = \dots$

3 Limites en un réel

On considère dans ce paragraphe une fonction f définie sur un ensemble D_f et $a \in D_f$ où a est l'extrémité d'un intervalle de D_f .

Définition:

- f admet pour limite à droite $l \in \mathbb{R}$ (resp. $+\infty$) en a si pour tout intervalle |u;v| contenant l il existe un réel $x_0 > a$ tel que pour tout $x \in]a; x_0[$ on a $f(x) \in]u; v[$ (resp. si pour tout intervalle $]u; +\infty[$, il existe x_0 tel que pour tout $x \in]a; x_0[$ on a $f(x) \in]u; +\infty[)$. On note alors (resp.).
- f admet pour limite à gauche $l \in \mathbb{R}$ (resp. $+\infty$) en a si pour tout intervalle u;v[contenant l, il existe un réel $x_0 < a$ tel que pour tout $x \in]x_0; a[$ on a $f(x) \in]u; v[$ (resp. si pour tout intervalle $]u; +\infty[$, il existe x_0 tel que pour tout $x \in]x_0; a[$ on a $f(x) \in]x_0; a[$ $]u;+\infty[).$ On note alors (resp.

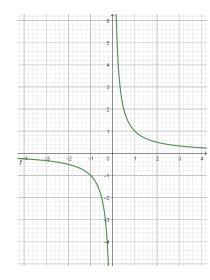
....).

Définition:

Soit a un réel, \mathcal{C} la courbe représentative d'une fonction f dans un repère. On dit que la droite d'équation x = a est asymptote verticale à C si

Exemple:

 $\begin{aligned} &\lim_{x \to 0} \frac{1}{x} = +\infty \\ &\text{et } \lim_{x \to 0} \frac{1}{x} = -\infty. \end{aligned}$



Définition:

On dit que f admet pour limite $+\infty$ en a lorsque pour tout intervalle de la forme $[u; +\infty[$, contient toutes les valeurs de f(x) dès que x est assez proche de a. On écrit $\lim_{x\to a} f(x) = +\infty$.

Remarque:

On définit de même $\lim_{x\mapsto a} f(x) = -\infty$ et $\lim_{x\mapsto a} f(x) = l$ où l est un réel.

Opérations sur les limites 4

Addition, multiplication, quotient

Dans ce qui suit, a est un réel ou $a = +\infty$ ou $a = -\infty$. Propriétés :

$\lim_{x \to a} f(x)$	$l \in \mathbb{R}$	$l \in \mathbb{R}$	$l \in \mathbb{R}$	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to a} g(x)$	$l' \in \mathbb{R}$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} (f+g)(x)$						

$\lim_{x \to a} f(x)$	$l \in \mathbb{R}$	$l \in \mathbb{R}*$	$+\infty$	$-\infty$	0
$\lim_{x \to a} g(x)$	$l' \in \mathbb{R}$	∞	$-\infty$	$-\infty$	∞
$\lim_{x \to a} (fg)(x)$					

Exemple:

 $\lim_{x\to-\infty} 3x^2 + \frac{1}{x}$: $\lim_{x \to -\infty} 3x^2 = \dots$ et $\lim_{x\to-\infty}\frac{1}{x}=\dots$

Donc par somme $\lim_{x\to-\infty} 3x^2 + \frac{1}{x} = \dots$

 $\lim_{x\to -\infty} 2x^2 + 3x + 5$:

Il y a une indéterminée à lever. $2x^2 + 3x +$

5 =

 $\lim_{x\to-\infty}$

D'où par produit

Propriété:

Soit f une fonction telle que $f = \frac{g}{h}$ où g et h sont deux autres fonctions. Si q tend vers et h tend vers 0 en un réel a, alors f tend vers, le signe restant à déterminer.

Exemple:

Étude des limites en 1 de $x\mapsto \frac{3x+2}{x-1}$:

$$\lim_{x \to 1} 3x + 2 = \dots$$
 et $\lim_{x \to 1} x - 1 = \dots$
 $\lim_{x \to 1} 3x + 2 = \dots$ et $\lim_{x \to 1} x - 1 = \dots$
done $\lim_{x \to 1} 3x + 2 = \dots$ et $\lim_{x \to 1} x - 1 = \dots$

donc $\lim_{x\to 1} \frac{3x+2}{x-1} = \dots$ et $\lim_{x\to 1} \frac{3x+2}{x-1} = \dots$

D'où la droite d'équation est asymptote verticale à la courbe \mathcal{C} .

Propriétés:

$\lim_{x \to a} f(x)$	$l \in \mathbb{R}$	$+\infty$ ou $-\infty$	$l \in \mathbb{R}$	$l \in \mathbb{R}^*$	0	∞
$\lim_{x \to a} g(x)$	$l' \in \mathbb{R}*$	$+\infty$ ou $-\infty$	$+\infty$ ou $-\infty$	0	0	$l \in \mathbb{R}^*$
$\lim_{x \to a} \frac{f}{g}(x)$			••••			

Exemple:

limite en $+\infty$ de f définie par $f(x) = \frac{4x^2+3}{x+2}$ pour $x \in]-2; +\infty]$. On a $\lim_{x \mapsto +\infty} 4x^2 + 3 = \dots$ et $\lim_{x \mapsto +\infty} x + 2 = \dots$ d'où une indétermination à lever. Or $f(x) = \dots$

On a $\lim_{x \to +\infty} 4 + \frac{3}{x^2} = \dots$ d'où $\lim_{x \to +\infty} x(4 + \frac{3}{x^2}) = \dots$ Comme $\lim_{x \to +\infty} 1 + \frac{2}{x} = \dots$, on a donc $\lim_{x \to +\infty} f(x) = \dots$

4.2 Limites de fonctions composées

Théorème:

a, b et c désignent des réels ou $+\infty$ ou $-\infty$. Soient f et g des fonctions. Si $\lim_{x\to\dots} f(x) = \dots$ et $\lim_{X\to\dots} g(X) = \dots$ alors $\lim_{x\to\dots} g(f(x)) = \dots$

Exemple:

Soit h définie sur \mathbb{R} par $(-3x^2+4)^4$. On a $\lim_{x\mapsto +\infty} -3x^2+4=\dots$ et $\lim_{X\mapsto -\infty} X^4=\dots$ donc $\lim_{x\mapsto +\infty} h(x)=\dots$

5 Comparaison et limites

Théorème de comparaison :

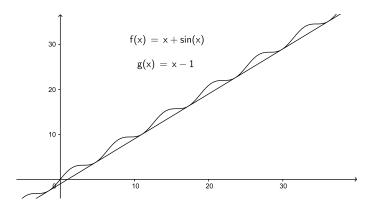
Si f et g sont deux fonctions telles que pour x assez grand, $f(x) \ge g(x)$ et $\lim_{x\to+\infty} g(x) = \dots$ alors $\lim_{x\to+\infty} f(x) = \dots$

Remarque:

Si pour x assez grand, $f(x) \leq g(x)$ et si $\lim_{x \to +\infty} g(x) = \dots$ alors $\lim_{x \to +\infty} f(x) = \dots$

Preuve:

Comme, pour x assez grand $f(x) \ge g(x)$, on en déduit que pour x assez grand ce qui justifie que $\lim_{x\to+\infty} f(x) = \dots$

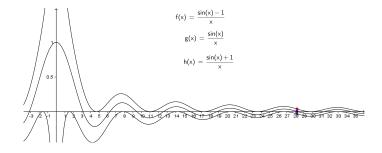


Théorème des gendarmes :

Si f, g et h sont des fonctions et l est un nombre réel tel que :

- pour x assez grand, $g(x) \le f(x) \le h(x)$;
- $\lim_{x\to+\infty} g(x) = \dots$ et $\lim_{x\to+\infty} h(x) = \dots$

Alors $\lim_{x\to+\infty} f(x) = \dots$



Remarque:

Les deux théorèmes précédents restent valident pour x tendant vers $-\infty$ et x tendant vers un réel.

6 Limite et fonction exponentielle

Propriété:

- $\lim_{x\to+\infty} e^x = \dots$
- $\lim_{x\to-\infty} e^x = \dots$

Preuve:

• Soit h définie sur $[0; +\infty[$ par $h(x) = \dots$.

On a pour tout x > 0, $h'(x) = \dots$.

h'(x) > 0 si et seulement si c'est à dire $x > \dots$

On en déduit que h est sur Comme par ailleurs h(0) =, on a donc pour tout x > 0, h(x)..... c'est à dire

Comme $\lim_{x\to+\infty} x = \dots$, par comparaison on obtient $\lim_{x\to+\infty} e^x = \dots$

• On pose $X=\dots$ On a $\lim_{x\to-\infty}\dots=\lim_{X\to+\infty}\dots=\lim_{X\to+\infty}\dots$ D'après le cas précédent, $\lim_{X\to+\infty}\dots=\dots$ donc $\lim_{X\to+\infty}\frac{1}{e^X}=\dots$

Propriété (croissances comparées):

- $\lim_{x\to+\infty}\frac{e^x}{x}=\dots$
- $\lim_{x \to +\infty} x e^{-x} = \dots$
- $\lim_{x\to-\infty} xe^x = \dots$
- Pour tout entier naturel k non nul, $\lim_{x\to+\infty}\frac{e^x}{x^k}=\dots$ et $\lim_{x\to-\infty}x^ke^x=\dots$

7 Application à la définition de la continuité d'une fonction

7.1 Notion de continuité

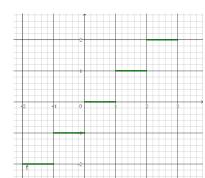
Définition:

Soit f une fonction définie sur un intervalle I et a un nombre réel de I.

- La fonction f est dite *continue en a* si elle admet en a une limite et ci cette limite est égale à, c'est à dire si
- f est dite continue sur I si elle est continue en tout réel $a \in I$.

Exemple : la fonction partie entière notée E :

On appelle fonction partie entière la fonction sur \mathbb{R} telle que pour tout réel x, E(x) est l'unique entier n tel que $n \leq x < n+1$ La fonction E est continue sur tout intervalle de la forme]n; n+1[où n est un entier relatif mais pas en n.

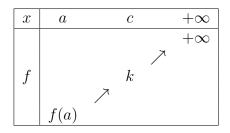


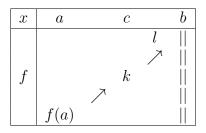
7.2 Généralisation du théorème des valeurs intermédiaires à des intervalles quelconques

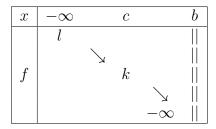
Propriété:

Soit f une fonction continue sur un intervalle I. Le théorème des valeurs intermédiaires admet, entre autres, les généralisations suivantes :

- Si $I = [a; +\infty[$ et $\lim_{x\to +\infty} f(x) = +\infty$ alors pour tout réel $k \geq f(a)$, l'équation f(x) = k admet au moins une solution dans l'intervalle $[a; +\infty[$. Si, de plus, f est strictement croissante, alors il y a unicité de la solution.
- Si I = [a; b[et $\lim_{x\to b} f(x) = l$ alors pour tout réel k compris entre f(a) et l l'équation f(x) = k admet au moins une solution dans [a; b[. Si de plus f est strictement croissante, alors il y a unicité de la solution.
- Si $I = [-\infty; b[$, $\lim_{x \to -\infty} f(x) = l$ et $\lim_{x \to b} f(x) = -\infty$ alors pour tout réel k < l, l'équation f(x) = k admet au moins une solution dans l'intervalle $] \infty; b[$. Si de plus, f est strictement décroissante, alors il y a unicité de la solution.







Exemple:

Étude du nombre de solution de l'équation $x^5=k$ où k est un réel fixé :

Soit f définie par $f(x) = x^5$ sur $] - \infty; +\infty[$.

- f est donc continue sur] $-\infty$; $+\infty$ [;
- pour tout réel x, $f'(x) = \dots$ donc $f'(x) \dots 0$ et $f'(x) \dots 0$ pour tout réel x non nul donc f est \dots sur $]-\infty;+\infty[$;
- $\lim_{x\to+\infty} x^5 = \dots$ et $\lim_{x\to-\infty} x^5 = \dots$.

Donc d'après une conséquence du théorème des valeurs intermédiaires, l'équation $x^5 = k$ admet sur \mathbb{R} .

