Fonctions trigonométriques, cours, terminale, spécialité mathématiques

F.Gaudon

26 février 2020

Table des matières

1	Fonctions trigonométriques	2
2	Étude des fonctions cosinus et sinus sur $[0;\pi]$	3
	2.1 Fonction cosinus	3
	2.2 Fonction sinus	3
3	Applications	4
	3.1 Résolution d'inéquations trigonométriques	4
	3.2 Exemple d'étude de fonctions	4

1 Fonctions trigonométriques

Définition:

- La fonction *cosinus* est la fonction définie sur \mathbb{R} par $x \mapsto \cos(x)$.
- La fonction sinus est la fonction définie sur \mathbb{R} par $x \mapsto \sin(x)$.

Propriété:

Les fonctions cosinus et sinus sont dérivables sur \mathbb{R} et :

- $\bullet \sin'(x) = \cos(x);$
- $\bullet \ \cos'(x) = -\sin(x).$

Définitions:

- On dit qu'une fonction f définie sur un intervalle I symétrique par rapport à 0 est *paire* si pour tout $x \in I$, f(-x) = f(x) c'est à dire si sa courbe représentative dans un repère orthogonal est symétrique par rapport à l'axe des ordonnées.
- On dit qu'une fonction f définie sur un intervalle I symétrique par rapport à 0 est *impaire* si pour tout $x \in I$, f(-x) = -f(x) c'est à dire si sa courbe représentative dans un repère orthogonal est symétrique par rapport à l'origine du repère.
- On dit qu'une fonction f définie sur \mathbb{R} est *périodique* de période T si pour tout réel $x \in \mathbb{R}$, f(x+T) = f(x).

Propriétés:

- Pour tout x réel, $\cos(x+2\pi) = \cos(x)$ et $\sin(x+2\pi) = \sin(x)$. Les fonctions cosinus et sinus sont des fonctions *périodiques* de période 2π .
- Pour tout réel x, $\cos(-x) = \cos(x)$. La fonction cosinus est une fonction *paire*.
- Pour tout réel x, $\sin(-x) = -\sin(x)$. La fonction sinus est une fonction *impaire*.

Exemple:

Soit f la fonction définie par $f(x) = \cos(4x)$.

Pour tout réel x, $f(-x) = \cos(-4x) = \cos(4x) = f(x)$ donc f est une fonction paire.

Pour tout réel x, $f(x + \frac{\pi}{2}) = \cos(4(x + \frac{\pi}{2})) = \cos(4x + 2\pi) = \cos(4x) = f(x)$ donc f est périodique de période $\frac{\pi}{2}$.

2 Étude des fonctions cosinus et sinus sur $[0; \pi]$

2.1 Fonction cosinus

Signe:

x	0		$\frac{\pi}{2}$		π
$\cos(x)$		+	0	-	

Variations:

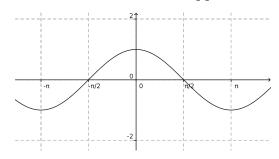
x	0		$\frac{\pi}{2}$		π
	1				
$\cos x$		V			
			0		
				\searrow	
					-1

Preuve des variations:

Pour tout $x \in [0; \pi]$, $\cos'(x) = -\sin(x)$. Pour tout $x \in]0; \pi[\sin(x) > 0 \text{ donc } \cos'(x) < 0 \text{ et la fonction cosinus est strictement décroissante sur } [0; \pi].$

Représentation graphique :

La représentation graphique de la fonction cosinus est appelée cosinusoïde.



2.2 Fonction sinus

Signe:

x	0	$\frac{\pi}{2}$	<u> </u>	π
$\sin(x)$	0	+	+	0

Variations:

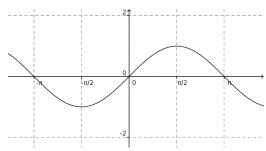
x	0		$\frac{\pi}{2}$		π
$\sin(x)$			1		
		7		\searrow	
	0				0

${f Preuve}:$

Pour tout $x \in [0; \pi]$, $\sin'(x) = \cos(x)$. Pour tout $x \in]0; \frac{\pi}{2}[$, $\cos(x) > 0$ et pour tout $x \in]\frac{\pi}{2}; \pi[$, $\cos(x) < 0$ donc la fonction sinus et strictement croissante sur $[0; \frac{\pi}{2}]$ et strictement décroissante sur $[\frac{\pi}{2}; \pi]$.

Représentation graphique :

La représentation graphique de la fonction sinus est appelée *sinusoïde*.



3 **Applications**

Résolution d'inéquations trigonométriques 3.1

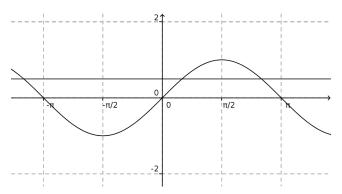
Exemple:

Résolution de l'inéquation $\sin(x) \ge \frac{1}{2} \sin [0; \pi]$.

On sait que l'équation $\sin(x) = \frac{1}{2}$ a pour solutions sur \mathbb{R} , $\frac{\pi}{6} + 2k_1\pi$ et $\pi - \frac{\pi}{6} + 2k_2\pi$ avec k_1 et k_2 entiers relatifs.

Les solutions sur $[0; \pi]$ sont donc $\frac{\pi}{6}$ et $\pi - \frac{\pi}{6} = \frac{5\pi}{6}$.

D'après les variations de la fonction sinus sur $[0;\pi]$, l'inéquation $\sin(x) \geq \frac{1}{2}$ a donc pour solutions $\left[\frac{\pi}{6}; \frac{5\pi}{6}\right]$ sur $[0;\pi]$.



Exemple d'étude de fonctions 3.2

Exemple:

Soit f la fonction définie sur $[0; \pi]$ par $f(x) = \frac{x}{2} - \sin(x)$.

f est dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = \frac{1}{2} - \cos(x)$.

 $f'(x) \ge 0$ équivaut à $\frac{1}{2} - \cos(x) \ge 0$ c'est à dire $\frac{1}{2} \ge \cos(x)$ On sait que $\cos(x) = \frac{1}{2}$ a pour solutions $\frac{\pi}{3} + 2k_1\pi$ et $-\frac{\pi}{3} + 2k_2\pi$ sur \mathbb{R} où k_1 et k_2 sont des entiers relatifs. Donc sur $[0; \pi]$, l'unique solution est $\frac{\pi}{3}$.

Par lecture du cercle trigonométrique, l'inéquation $\cos(x) \leq \frac{1}{2}$ a pour solutions $\left[\frac{\pi}{3}; \pi\right]$.

Par conséquent, on a le tableau de variations suivant :

x	0	$\frac{\pi}{3}$		π
f'(x)	-	0	+	
f(x)	×		7	
		$\frac{\pi}{6} - \frac{\sqrt{3}}{2}$		

