Matrices, cours, Terminale, maths expertes

F.Gaudon

3 juillet 2023

Table des matières

1	Suites de matrices	2
2	Graphes orientés pondérés et chaînes de Markov	4

1 Suites de matrices

Définition:

Soit n un entier naturel. On appelle suite de matrices colonnes (U_n) (respectivement matrices lignes), des matrices colonnes (respectivement lignes) dont tous les termes sont des termes de suites numériques.

Exemple:

La suite définie par $U_n = \binom{2n}{3n^2}$ est une suite de matrices colonnes.

Propriété:

Soit (U_n) une suite de matrices colonnes de taille p vérifiant pour tout entier naturel n,

$$U_{n+1} = AU_n$$

où A est une matrice carrée d'ordre p. Alors, pour tout entier naturel n,

$$U_n = A^n U_0$$

Preuve:

Montrons par récurrence la propriété (\mathcal{P}_n) suivante : Pour tout entier naturel n, $U_n = A^n U_0$.

Initialisation : Pour n = 0, $A^0 = I$ où I est la matrice identité par convention et on a bien $U_0 = IU_0$.

Hérédité : On suppose que la propriété est vraie pour un rang $k \in \mathbb{N}$ c'est à dire que $U_k = A^k U_0$.

Alors $U_{k+1} = AU_k$ par construction de la suite (U_n) . MPuis par hypothèse de récurrence, $U_k = A^k U_0$.

D'où $U_{k+1} = AA^kU_0$ donc $U_{k+1}A^{k+1}U_0$

D'où l'hérédité est vraie.

Conclusion : Par récurrence, la propriété est vraie pour tout entier naturel n.

Exemple:

Soit A la matrice carrée définie par $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$. Soit U_n la suite définie par $U_0 = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$ et pour tout entier naturel n $U_{n+1} = AU_n$. Alors $U_n = A^n U_0 = \begin{pmatrix} 2^n & 0 \\ 0 & 3^n \end{pmatrix} U_0 = \begin{pmatrix} 5 \\ -3^n \end{pmatrix}$.

Propriété:

Soit une suite de matrices colonnes (U_n) de taille p vérifiant pour tout entier naturel n, $U_{n+1} = AU_n + B$ où A est une matrice carrée d'ordre p non nulle et B une matrice colonne de taille p. S'il existe une matrice C telle que C = AC + B, alors le terme général de cette suite peut s'écrire $U_n = A^n(U_0 - C) + C$.

Preuve:

Pour tout entier naturel n, on remarque par soustraction terme à terme de $U_{n+1} = AU_n + B$ et de C = AC + B que $U_{n+1} - C = AU_n + B - (AC + B) = AU_n - AC = A(U_n - C)$.

On pose $M_n = U_n - C$. L'égalité précédente s'écrit alors $M_{n+1} = AM_n$. D'après la propriété précédente, on a donc $M_n = A^n M_0$ c'est à dire $U_n - C = A^n (U_0 - C)$.

Définition:

Une suite de matrices est dite convergente si toutes les suites formant les éléments de cette matrice sont convergents.

Exemple:

La suite (U_n) définie par $U_n = \begin{pmatrix} 3 + \frac{1}{n} \\ 0, 5^n \end{pmatrix}$ est convergente vers $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$.

2 Graphes orientés pondérés et chaînes de Markov

Définition:

Un graphe orienté est pondéré lorsque chaque arête est affectée d'un nombre réel positif, appelé poids de cette arête.

Un graphe est *probabiliste* est un graphe orienté pondéré dans lequel tous les poids sont compris entre 0 et 1 et tel que la somme des poids des arêtes issus d'un sommet est égale à 1.

Définition:

- Soit une expérience aléatoire ayant p issues. possibles. Une chaîne de Markov sur $E = \{S_1; S_2; \dots; S_p\}$ est une suite de variables aléatoires (X_n) prenant chacune pour valeurs les différents états possibles, telle que l'état du processus à l'instant n+1 ne dépend que de celui à l'instant n précédent.
- La probabilité de passage (ou de transition) de l'état i à l'état j en une étape (ou une transition) est la probabilité $p_{X_n=i}(X_{n+1}=j)$ notée $p_{i,j}$.
- La matrice $(p_{i,j})$ est appelée *matrice de passage* (ou de transition) de la marche aléatoire.

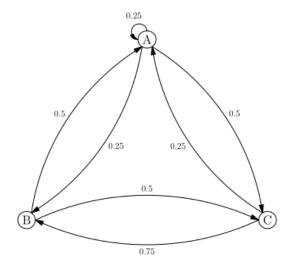
Exemple:

Un robot se déplace aléatoirement sur un triangle ABC. On note (X_n) la variable aléatoire donnant la position du robot à l'étape n.

On suppose que :

- À partir de A, le robot reste en A avec une probabilité de 0,25, va en B avec une probabilité de 0,25 et va en C avec une probabilité de 0,5;
- à partir de B, le robot va en A avec une probabilité de 0,5 et va en C avec une probabilité de 0,5;
- à partir de C, le robot va en A avec une probabilité de 0,25, va en B avec une probabilité de 0,75.

La matrice de transition associée à cette chaîne de Markov est :



$$: \begin{pmatrix} 0, 25 & 0, 25 & 0, 5 \\ 0, 5 & 0 & 0, 5 \\ 0, 25 & 0, 75 & 0 \end{pmatrix}$$

Propriété:

Soit une matrice de transition formée des éléments $p_{i,j}$.

- Tous ses éléments sont compris entre $0 \le p_{i,j} \le 1$.
- $\bullet\,$ La somme des éléments de chaque ligne vaut 1 :

$$\sum_{k=0}^{p} p_{i,k} = p_{i,1} + p_{i,2} + \dots + p_{i,p} = 1$$

Propriété:

On considère une chaîne de Markov (X_n) dont on note P la matrice de transition associée et π_0 la matrice ligne donnant la distribution initiale. Si, on note π_n la matrice ligne donnant la loi de X_n alors on a pour tout entier naturel n

$$\pi_{n+1} = \pi_n P$$

et

$$\pi_n = \pi_0 P^n$$

Preuve:

Par récurrence

Propriété:

Soit (X_n) une chaîne de Markov à 2 ou 3 états de matrice de transition P. Il existe au moins une distribution initiale π telle que $\pi P = \pi$. Cette distribution est appelée distribution invariante de la chaîne de Markov.

Propriété:

On considère une chaîne de Markov (X_n) de matrice de transition P, et de distribution π_n de X_n pour tout entier naturel n. Si P ne contient aucun 0, alors la suite de matrices lignes (π_n) converge vers l'unique distribution invariante de la chaîne de Markov.

Démonstrations:

Admises.

