Primitives et équations différentielles, cours, classe de terminale, Mathématiques complémentaires

1 Équations différentielle et primitives d'une fonction continue sur un intervalle

Définition:

Une équation différentielle est une équation dont l'inconnue est une fonction définie et dérivable sur un intervalle I et qui fait intervenir sa fonction dérivée et/ou sa fonction dérivée seconde.

Exemple:

L'équation d'inconnue y, y'(t) = 4t pour tout $t \in \mathbb{R}$ est une équation différentielle. La fonction y définie sur \mathbb{R} par $y(t) = 2t^2$ pour tout $t \in \mathbb{R}$ en est une solution.

Définition:

Exemple:

 $F: x \mapsto \dots$ est une primitive de $f: x \mapsto x$ car pour tout réel x.

2 Propriétés des primitives

F-G est

Propriété :
Soit f une fonction admettant une primitive F sur un intervalle I . Alors f admet
primitives : G est une primitive de f si et seulement
si il existe un réel k tel que pour tout réel x ,
oreuve:
Si F et G sont deux primitives de f sur L alors

Exemple	:
	•

 $F_1: x \mapsto \dots$ et $F_2: x \mapsto \dots$ sont deux primitives de $x \mapsto x$.

Propriété:

Soit f une fonction admettant une primitive F sur un intervalle I. Soit a appartenant à I et b un réel. Alors il existe telle que G(a) = b.

preuve:

Exemple [Savoir déterminer une primitive vérifiant des contraintes] :

Recherchons une primitive F de $x \mapsto x$ sur \mathbb{R} telle que F(1) = 2.

F(1) = 2 impose donc

D'où

Propriété:

Toute fonction f continue sur un intervalle I admet des primitives sur I.

Preuve:

Admis

3 Calcul de primitives

3.1 Opérations sur les primitives

Propriété:

Soient f_1 et f_2 deux fonctions continues sur un intervalle I. Soit F_1 une primitive de f_1 et F_2 une primitive de f_2 . Soit k un réel.

- kF_1 est une primitive de
- $F_1 + F_2$ est une primitive de

Preuve:

 $(kF_1)'$ et $(F_1+F_2)'=$ d'après les opérations sur les fonctions dérivées.

3.2 Primitives de fonctions de référence

Exemples fondamentaux:

f définie sur I par	primitives F de f sur I	intervalle I
0		\mathbb{R}
1		\mathbb{R}
x		\mathbb{R}
x^2		\mathbb{R}
$x^n, n \in \mathbb{N}^*$		\mathbb{R}
$\frac{1}{2\sqrt{x}}$		$]0;+\infty[$
$\frac{1}{x}$		$]0;+\infty[$
$\frac{1}{x^2}$		$]-\infty;0[\text{ ou }]0;+\infty[$
$\frac{1}{x^n}, n \in \mathbb{N}$		$]-\infty;0[\text{ ou }]0;+\infty[$
e^x		\mathbb{R}

où C désigne un nombre réel.

Exemple:

Soit f la fonction définie sur \mathbb{R} par $f(x) = 5x^2 + 3e^x - 6$. Alors les primitives de f sur \mathbb{R} sont définies par

3.3 Primitives de fonctions composées

Exemples fondamentaux:

f définie sur I par	Primitives F de f sur I	intervalle I
u'u		\mathbb{R}
$\frac{u'}{u}$		I tel que u > 0 sur I
$u'e^u$		\mathbb{R}

où ${\cal C}$ désigne un nombre réel.

Exemples:

- Soit f définie sur \mathbb{R} par $f(x) = (2x+1)(x^2+x)$. On a $f(x) = \dots$ avec $u(x) = \dots$ et $u'(x) = \dots$. Donc les primitives de f sont définies par

4 Résolution de l'équation différentielle y'=ay

Théorème:

a désigne un nombre réel non nul. Les solutions sur $\mathbb R$ de l'équation différentielle y'=ay sont les fonctions définies par où k est un réel quelconque.

Preuve:

La fonction f_k définie sur \mathbb{R} par $f_k(x) = \dots$ est dérivable sur \mathbb{R} .

Donc f_k est une solution particulière de l'équation.

Démontrons ensuite que les fonctions f_k sont les seules solutions.

On considère pour cela une fonction g solution de l'équation y' = ay sur \mathbb{R} et la fonction h définie par $h(x) = g(x)e^{-ax}$.

h est dérivable sur \mathbb{R}

et
$$h'(x) =$$

...... Comme g vérifie g'=ag on a donc h'=..... donc h est

Il existe donc un réel k tel que pour tout réel x, $h(x) = \dots$, c'est à dire $g(x)e^{-ax} = \dots$ donc $g(x) = \dots$

Exemple:

L'équation y' = 3y a pour solutions les fonctions f définies par

5 Équation différentielle y' = ay + b

Théorème:

Preuve:

• Montrons que la fonction f_k définie sur \mathbb{R} par $f_k(x) = \dots$ avec k réel, est une solution.

Elle est dérivable sur \mathbb{R} et

$$f'_k(x) =$$

donc
$$af_k(x) + b = \dots$$

c'est à dire que f_k est solution de l'équation différentielle y' = ay + b.

• Montrons que toute solution s'écrit de cette forme.

Soit f une solution sur \mathbb{R} de y' = ay + b.

On note g la fonction définie par $g(x) = f(x) + \frac{b}{a}$.

g est dérivable et $g'(x) = \dots$

Or
$$f'(x) = af(x) + b$$
 donc $g'(x) =$

d'où g est une solution de l'équation y' = ay et il existe donc un réel k tel que pour tout réel $g(x) = \dots$

d'où $f(x) = \dots$ ce qui montre que f est de la forme voulue.

Exemple:

L'équation y' = 3y - 4 a pour solutions les fonctions f définies sur $\mathbb R$ par

Propriété:

Pour tout couple de réels $(x_0; y_0)$, l'équation différentielle y' = ay + b (avec $a \neq 0$) admet une unique solution f telle que $f(x_0) = y_0$.

Preuve:

On a alors $f(x_0) = y_0$ si et seulement si ce qui équivaut à ce qui fixe le réel k de manière unique.

Exemple:

