Statistiques à une ou deux variables,cours,T STMG

8 juillet 2015

1 Statistiques à une variable (rappels)

Propriété :

Soient x_i pour *i* allant de 1 à *p* où *p* est un entier les valeurs distinctes d'une série statistique et n_i pour *i* allant de 1 à *p* les effectifs correspondants. On note *N* l'effectif total, somme des n_i pour *i* allant de 1 à *p*.On définit :

Exemple :

On a relevé le prix de la baguette de pain dans diverses boulangeries :

Prix en euros	0,82	0,83	0,84	0,85	0,86	$0,\!87$
Nombre de boulangeries	10	42	85	23	8	2

On a :

 $\bar{x} = \dots$ et

 $\sigma = \dots$

Définition (couple médiane/quartiles) :

Définition (diagramme en boîte) :

2 Statistiques à deux variables

2.1 Vocabulaire

Définition :

Soient x et y deux caractères quantitatifs d'une même population. Á chaque individu de la population on associe un couple (x_i; y_i) où x_i et y_i pour i ∈ {1;...;n} avec n entier naturel sont les valeurs prises respectivement par x et y. L'ensemble de ces couples constitue une série statistique à deux variables x et y.
Dans un repère (O; i; j), l'ensemble des points M_i de coordonnées (x_i; y_i) est appelé associé à la série statistique.

Exemple :

Un magasin réalise une étude sur l'influence du prix de vente sur le nombre de machines à laver vendues au cours d'une année. Le tableau suivant donne les résultats de cette étude :

Prix x_i en euros	300	350	400	448	500	600
Nombre de machines vendues	208	190	160	152	124	102

Le nuage de points associé à cette série est constitué des points M_1 (300; 210), M_2 (350; 190),..., M_6 (600; 102).

2.2 Ajustement d'un nuage de points

Définition :

Toute droite "résumant approximativement" le nuage est appelée du nuage de points.

2.3 Détermination d'une équation de droite d'ajustement affine

Méthode graphique au jugé :

On trace « au jugé » une droite qui « semble résumer » le nuage de points. C'est une méthode simple mais

Méthode des moindres carrés :

Avec les notations de la figure ci-dessous, étant donné un nuage de n points M_i , il existe une droite passant par le point moyen G et telle que la somme des carrés des écarts (ou résidus) $P_1M_1^2 + P_2M_2^2 + \ldots + P_nM_n^2$ soit minimale. Cette droite est appelée droite de régression de y en x. On peut montrer que son équation réduite est y = mx + p avec :

$$m = \frac{(x_1 - \bar{x})(y_1 - \bar{y}) + (x_2 - \bar{x})(y_2 - \bar{y}) + \ldots + (x_p - \bar{x})(y_p - \bar{y})}{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_p - \bar{x})^2}$$

 et

 $p = \bar{y} - m\bar{x}$

En pratique, on utilisera la calculatrice pour l'obtenir.

Exemple :

On reprend l'exemple précédent.

• Recherche de l'équation réduite à l'aide des formules :

$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$
	Total		
D'où :	1	1	1

$$m = \dots$$

et $p = \dots$

- Recherche de l'équation réduite avec la calculatrice :
 - TI 82 et plus : Aller dans le menu STAT puis EDIT. Entrer les valeurs x_i dans la colonne L₁ et les valeurs y_i dans la colonne L₂. Quitter (2nde QUIT) puis menu STAT et CALC. Choisir LinReg(ax+b) puis 2nd L1, 2nd L2 pour indiquer les deux colonnes à utiliser. Valider ensuite ENTER.
 - CASIO Graph 25 et plus : Aller dans le menu STAT puis entrer les valeurs x_i dans la colonne 1 et les valeurs y_i dans la colonne 2. Choisir ensuite CALC puis REG puis X.