Probabilités conditionnelles, cours, terminale STG

1 Rappels sur les intersections et les réunions

Définition:

Soient A et B deux événements.

- L'événement $A \cap B$ (lire "A B") est l'ensemble des issues qui réalisent à la fois A B.
- L'événement $A \cup B$ (lire "A B") est l'ensemble des issues qui réalisent A B, c'est à dire des deux événements.

Propriété:

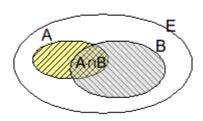
Soit P une loi de probabilité sur un ensemble E.

 \bullet Pour tous les événements A et B, on a :

.....

- En particulier, si A et B sont des événements incompatibles, alors $P(A \cup B) = P(A) + P(B)$.
- Pour tout événement A,

.....



2 Notion de probabilité conditionnelle

Définition:

Pour tout événement A et tout événement B non impossible, on appelle probabilité conditionnelle de A sachant B et notée $P_B(A)$ le nombre

...

Exemple 1:

Lors d'un sondage, 50% personnes des interrogées déclarent pratiquer un sport régulièrement et 75% des personnes interrogées déclarent aller au cinéma régulièrement. De plus, 40% des personnes déclarent faire du sport et aller au cinéma régulièrement. On interroge à nouveau une de ces personnes au hasard et on considère les événements « la personne interrogée pratique un sport régulièrement » et « la personne interrogée va au cinéma régulièrement » que l'on notent S et C respectivement. On cherche à calculer la probabilité que la personne pratique un sport régulièrement sachant qu'elle va régulièrement au cinéma.

On a
$$P(C) = 0.75$$
 et $P(S \cap C) = 0.4$. Donc $P_C(S) = ...$

Remarque:

Soient A et B deux événements non impossibles d'un univers donné. La connaissance de la probabilité d'un événement B et de la probabilité conditionnelle d'un événements A sachant B permet de retrouver la probabilité $P(A \cap B)$ de l'intersection de A et B avec la formule :

....

Exemple 2:

La tableau suivant montre la répartition du personnel dans une usine :

	Cadres	Ouvriers	Total
Hommes	100	200	300
Femmes	50	150	200
Total	150	350	500

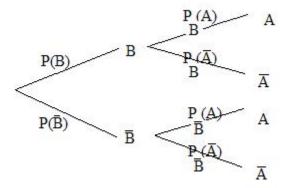
On rencontre un employé au hasard. On note H l'événement « l'employé rencontré est un homme » et C l'événement « l'employé rencontré est un cadre ».

On a
$$P(H) =$$
 et $P_H(C) =$ $P_H(\bar{C}) =$

On a
$$P_H(C) + P_H(\bar{C}) = 1$$
.

En outre, $P(H \cap C) = \dots$

3 Arbre pondérés



Définition:

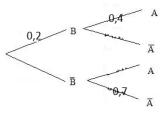
Le schéma ci-dessus est appelé arbre pondéré ou arbre à probabilités. Il comporte 4 chemins : $A \cap B$, $A \cap \bar{B}$, et Un noeud est un point d'où partent plusieurs branches.

Propriété:

Dans un arbre pondéré ou arbre à probabilités comme ci-dessus,

- La des probabilités portées sur les branches issues d'un même noeud est égale à 1. Par exemple,;
- la probabilité d'un événement est des probabilités des chemins qui le compose. Par exemple,

Exemple:



Sur l'arbre ci-dessus :

- $P_B(A) =; P_{\bar{B}}(\bar{A}) =; P(B) =;$
- $P(\dot{\bar{B}}) = \dots$;
- $P_B(\bar{A}) = \dots$;
- $\bullet \ P(B \cap A) = \dots;$

