Taux d'évolutions, cours de Terminale STMG

1 Évolutions

1.1 De la valeur initiale à la valeur finale

Propriété et définition :

Si une quantité évolue à partir d'une valeur y_1 de départ d'un taux t (augmentation si t > 0, diminution si t < 0), alors la valeur finale y_2 est :

...

1+t est appelé le *coefficient multiplicateur* associé à la hausse ou à la baisse.

$$y1$$
 $\xrightarrow{\text{multiplication par }1+t}$ $y2$ $\xrightarrow{\text{multiplication par }1/(1+t)}$

1.2 Trouver le taux d'évolution

Propriété:

Si une quantité varie d'une valeur initiale y_1 à une valeur finale y_2 alors le taux d'évolution est :

...

Preuve:

$$y_2 = \dots y_1$$

$$y_2 = \dots$$

$$y_2 - y_1 = \dots$$

$$t = \dots$$

Exemple:

Le cours de l'action d'une entreprise gérant un réseau social est passé de 38 dollars à son introduction en bourse à à 26,25 dollars le 18 mai 2013.

Le prix de l'action a donc baissé de 30,93%.

1.3 Le coefficient multiplicateur réciproque

Définition:

On appelle *coefficient multiplicateur réciproque* le coefficient multiplicateur permettant de passer de y_2 à y_1 . Il vaut :

...

Le taux d'évolution associé est appelé taux d'évolution réciproque, il donne le taux d'évolution de y_2 à y_1 .

Exemple:

Le prix du gasoil a augmenté de 20% en un an. Son prix actuel est de 1,07€ par litre.

....

Il y a un an le litre de gasoil valait

Remarque:

Pour t « proche » de $0, \frac{1}{1+t} \approx 1 - t$.

Le taux réciproque d'une évolution pour un taux t voisin de 0 est donc approximativement de

Exemple:

• Un prix subit une augmentation de 0,2 %. Le prix après augmentation est alors de 70 \in .

Calcul du prix initial:

•••

soit 69,86027 euros.

Calcul du prix initial approché à l'aide de la propriété énoncée :

•••

soit 69,86 euros.

Il y a donc une différence mais compte tenu de la situation elle est négligeable.

		Taux a evolutions, cours, classe at terminate STM
•	• Par contro	e, supposons que l'augmentation est maintenant de 2 %. Calcul du prix initial :
	soit 68,63	euros.
	Calcul du	prix initial approché à l'aide de la propriété énoncée :
	soit 68,60	euros.
	La différe	ence n'est plus négligeable.
2	Évolut	ions successives
4	Evolut	ions successives
2.1	Taux g	lobal et coefficient multiplicateur global
Pro	priété et dé	finition:
		Si une quantité subit n évolutions successives (augmentations ou diminutions)
		de taux $t_1, t_2,, t_n$ à partir d'une valeur initiale y_1 à une valeur finale y_n , alors la quantité finale est :
		Le coefficient multiplicateur global est donné par :
		Ze coefficient manipulation growth est domine par i
		ou par :
		Le taux d'évolution global est donné par :
		ou par :

Exemple:

•	• La population d'une ville augmente de 2,3%	en un an puis diminue de 3,4% les deux années suivantes.	
	Le coefficient multiplicateur global est donc		
	Le taux global d'évolution est	soit une haisse de	

Attention : ce n'est pas la somme des taux successifs :

• Si la population de la ville était de 16 000 habitants en 2010 et de 18 000 habitants en 2012, alors le taux global d'évolution entre ces deux années est soit 12,5% d'augmentation.

2.2 Taux moyen

2.2.1 Équations $x^n = a$

Propriété:

Soient a un nombre réel strictement positif et n un entier naturel. L'équation $x^n=a$ admet une unique solution dans $[0;+\infty[$, le nombre appelé du nombre a.

Exemple:

 $x^3 = 64$ si et seulement si $x = \dots$ c'est à dire $x = \dots$

2.2.2 Application au calcul de taux moyen

Propriété et définition :

On considère une quantité qui subit n évolutions successives de taux t_1, t_2, \ldots, t_n , et donc de taux global $t=\ldots$ On appelle alors *coefficient multiplicateur moyen* le nombre donné par :

On appelle *taux moyen* le taux qui lui est associé, c'est à dire le nombre donné par :

ou

C'est le taux d'évolution, qui, s'il avait été identique à chacune des n évolutions, aurait donné la même valeur finale que les différents taux t_1, t_2 , etc. successivement appliqués.

Exemples:

_	
,	Un prix initial de $100 \in$ subit une augmentation de 2 % puis une baisse de 30 %. $(1 + \frac{\dots}{100})(1 - \frac{\dots}{100}))$ =
	$0,714^{} \approx$
	En outre, $-1 = \dots$
	soit de baisse annuelle en moyenne.

 \bullet Un produit a vu son prix multiplié par 1,6 en 4 ans. Soit t le taux moyen de l'augmentation. On a $(1+t)^{\dots}=\dots$

donc 1 + t = 1, 6 donc t = 1, 6 donc t = 1, 6

d'où $t \approx$ c'est à dire % d'augmentation par an en moyenne.

3 Indices de base 100

Définition:

On appelle *indice* i de base 100 d'une quantité y_2 par rapport à une quantité y_1 , le nombre :

...

Exemple:

On suit l'évolution du prix d'un produit : il valait $16 \in$ en 2006 et vaut $18,2 \in$ en 2007.

...

L'indice du prix en 2007 par rapport à 2006 est donc

Propriété:

Soit t le taux d'évolution d'une quantité y_1 à une quantité y_2 . On suppose que l'on connaît l'indice i de y_2 par rapport à y_1 . Alors

...

Preuve:

On a $i=\frac{y_2}{y_1}\times 100$ par définition donc $\frac{y_2}{y_1}=\frac{i}{100}$. D'autre part, $t=\frac{y_2-y_1}{y_1}$ par définition. Par conséquent, $t=\frac{y_2}{y_1}-\frac{y_1}{y_1}$ donc $t=\frac{y_2}{y_1}-1$ et $t=\frac{i}{100}-1$

Exemples:

On prend pour référence de l'indice des prix des produits manufacturés l'année 2004.

• Si l'indice en 2005 vaut 105,3 alors le taux d'augmentation entre 2004 et 2005 a été de :

...

• Si entre 2004 et 2006, les prix ont augmenté de 9,7 % alors l'indice des prix en 2006 est :

...

-	• / . /	
Prai	ariata	
110	oriété	•

Le taux d'évolution entre deux quantités est égal au taux d'évolution

Exemple:

On étudie le chiffre d'affaires d'une entreprise sur plusieurs années :

Année	2001	2002	2003
Chiffre d'affaires	2500	2875	3125
Indice	100		

L indice	e au chiffre	a anaires o	ie 2002 par	rapport a 20	or est:
•••					

Celui de 2003 par ra	pport à 2001 est :
----------------------	--------------------

...

Le taux d'évolution entre 2002 et 2003 est :
...

soit environ