Limites de fonctions, classe de terminale STI

1 Limites finies à l'infini

Soit f une fonction définie sur un intervalle $[a; +\infty[$ où $a \in \mathbb{R}$.

Définition:

Soit l un réel. On dit que f admet pour limite l en $+\infty$ (resp. $-\infty$) si les valeurs de f(x) peuvent être rendues aussi proches que l'on veut de l à condition de prendre les valeurs de x suffisament grandes (resp. suffisament petites). On note alors $\lim_{x\to\dots f} f(x) = \dots$ (resp. $\lim_{x\to \infty} f(x) = \dots$).

Propriété:

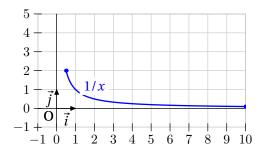
- Pour tout entier naturel k non nul $\lim_{x\to+\infty}\frac{1}{x^k}=\ldots$ et $\lim_{x\to-\infty}\frac{1}{x^k}=\ldots$;
- $\lim_{x\to+\infty} \frac{1}{\sqrt{x}} = \dots;$
- Pour tout entier naturel non nul k, $\lim_{x\to +\infty} \frac{1}{x-k} = \dots$ et $\lim_{x\to -\infty} \frac{1}{x-k} = \dots$

Définition:

Soit $l \in \mathbb{R}$ et soit \mathcal{C} la courbe représentative d'une fonction f dans un repère.

Exemples:

 $\lim_{x\to+\infty}\frac{1}{x}=$ et $\lim_{x\to-\infty}\frac{1}{x}=$ donc la droite d'équation est à l'hyperbole en $+\infty$ et en $-\infty$.



2 Limites infinies à l'infini

Définition:

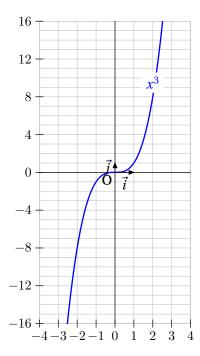
f admet pour limite $+\infty$ en $+\infty$ (resp. en $-\infty$ en $+\infty$) si les valeurs de f(x) peuvent être rendues aussi grandes que l'on veut (aussi petites que l'on veut) à condition de prendre les valeurs de x suffisament grandes. On note alors $\lim_{x\to----} f(x) = \dots (\text{resp. } \lim_{x\to-----} f(x) = \dots).$ On dit aussi que f(x) tend vers $+\infty$ (resp. tend vers $-\infty$) quand x tend vers $+\infty$.

Remarque:

On définit de même les limites en $-\infty$.

Propriétés:

- Pour tout entier naturel k non nul, $\lim_{x\to+\infty} x^k = \dots$;
- $\bullet \lim_{x \to -\infty} x = \dots;$
- $\bullet \ \overline{\lim_{x \to -\infty} x^2} = \dots;$
- $\bullet \ \lim_{x \to -\infty} x^3 = \dots;$
- $\lim_{x\to+\infty}\sqrt{x} = \dots$



Définition:

Soient a et b deux réels avec $a \neq 0$. C est la courbe représentant une fonction f dans un repère.

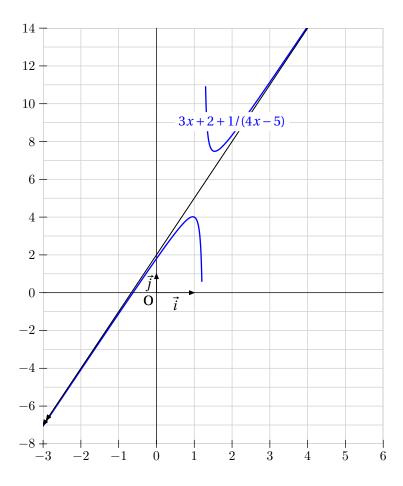
La droite d'équation y = ax + b est asymptote oblique à la courbe \mathcal{C} en $+\infty$ (resp. $-\infty$) si

•••••

.....

Exemple:

Soit f la fonction définie pour tout $x \in \mathbb{R} - \{\frac{5}{4}\}$ par $f(x) = 3x + 2 + \frac{1}{4x - 5}$ et soit \mathcal{D} la droite d'équation y = 3x + 2. On a $f(x) - (3x + 2) = \dots$ pour tout réel $x \neq \mathbb{R} - \{\frac{5}{4}\}$ et donc \mathcal{D} est une asymptote oblique à \mathcal{C}_f en $+\infty$ (même démonstration en $-\infty$).



3 Opérations sur les limites à l'infini

3.1 Addition

c désigne $+\infty$ ou $-\infty$.

$\lim_{x\to c} f(x)$	$l \in \mathbb{R}$	$l \in \mathbb{R}$	$l \in \mathbb{R}$	$+\infty$	$-\infty$	$+\infty$
$\lim_{x\to c} g(x)$	$l' \in \mathbb{R}$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to c} (f+g)(x)$						

Exemple:

 $f(x) = x^2 + 3x$. On a $\lim_{x \to +\infty} x^2 = \dots$ et $\lim_{x \to +\infty} 3x = \dots$ donc $\lim_{x \to +\infty} f(x) = \dots$ Pour $g(x) = x^2 - 3x$ en $+\infty$ on ne peut pas conclure en utilisant les règles précédentes.

3.2 Multiplication

$\lim_{x \to c} f(x)$	$l \in \mathbb{R}$	$l \in \mathbb{R}*$	$+/-\infty$	0
$\lim_{x \to c} g(x)$	$l' \in \mathbb{R}$	$+/-\infty$	$+/-\infty$	$+/-\infty$
$\lim_{x \to c} (fg)(x)$				

Exemple:

 $g(x)=x^2-3x$. On a pour tout réel x, g(x)=x(x-3). Or $\lim_{x\to+\infty}x=\dots$ et $\lim_{x\to+\infty}x-3=\dots$ donc $\lim_{x\to+\infty}g(x)=\dots$

3.3 Inverse

$\lim_{x \to c} f(x)$	II / U / /. /_ U		0-	$+/-\infty$	
$\lim_{x \to c} \frac{1}{f(x)}$					

3.4 Quotient

$\lim_{x \to c} f(x)$	l	l	$l \neq 0$	0	$+/-\infty$	$+/-\infty$	$+/-\infty$
$\lim_{x\to c} g(x)$	$l' \neq 0$	$+/-\infty$	0	0	0	$l' \neq 0$	$+/-\infty$
$\lim_{x\to c} \frac{f(x)}{g(x)}$							

Exemple :

 $f(x) = \frac{3}{4x+5}$. On a $\lim_{x\to+\infty} 3 = \dots$ et $\lim_{x\to+\infty} 4x + 5 = \dots$ donc $\lim_{x\to+\infty} f(x) = \dots$. Pour $g(x) = \frac{3x^2+2}{4x+1}$ en $+\infty$, on ne peut pas conclure en utilisant les règles précédentes.

3.5 Cas des limites à l'infini des fonctions polynômes ou rationnelles

Propriété:

Preuve:

On le montre pour x tendant vers $+\infty$, la démonstration restant la même pour x tendant vers $-\infty$. On écrit $f(x) = x^n(\frac{a_0}{x^n} + \frac{a_1}{x^{n-1}} + \dots + \frac{a_{n-1}}{x} + a_n)$. On constate que $\lim_{x \to +\infty} \frac{a_0}{x^n} = 0$, $\lim_{x \to +\infty} \frac{a_1}{x^n} = 0$. Comme $a_n \neq 0$ et que x^n tend vers $+\infty$, la limite en $+\infty$ est bien donnée par la limite de $a_n x^n$.

Propriété:

Preuve:

On écrit $f(x) = \frac{x^n}{x^p} \frac{a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}} + a_0}{b_p + \frac{b_{p-1}}{x} + \dots + \frac{b_1}{x} + b_0}$ et on raisonne comme dans la démonstration précédente.

Preuve:

4 Limites en un réel

On considère dans ce paragraphe une fonction f définie sur un ensemble D_f et a est l'extrémité d'un intervalle de D_f .

Définition:

• f admet pour limite $l\mathbb{R}$ (resp. $+\infty$) en a si les valeurs de f(x) peuvent être rendues aussi proches de l (resp. aussi grandes) que l'on veut à condition de prendre les valeurs de x suffisament proches de a.

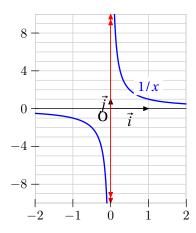
On note alors $\lim_{x\to\dots} f(x) = \dots$ (resp. $\lim_{x\to\dots} f(x) = \dots$

On note alors $\lim_{x \to a} f(x) = l$ (resp. $\lim_{x \to a} f(x) = +\infty$).

On note alors $\lim_{x\to a} f(x) = l$ (resp. $\lim_{x\to a} f(x) = +\infty$).

Exemple:

$$\lim_{x \to 0} \frac{1}{x} = \dots$$



Définition:

Propriété:

Soit f une fonction telle que $f = \frac{g}{h}$ où g et h sont deux autres fonctions. Si g a une limite (ou une limite à droite ou à gauche) non nulle et h tend vers 0 en un réel a, alors f tend vers l'infini, le signe restant à déterminer.

Exemple:

$$\lim_{\substack{x \to 1 \\ >}} x + 1 = 2 \text{ et } \lim_{\substack{x \to 1 \\ >}} x - 1 = \dots \text{ donc } \lim_{\substack{x \to 1 \\ >}} \frac{x+1}{x-1} = \dots \text{ lim}_{\substack{x \to 1 \\ <}} x + 1 = 2 \text{ et } \lim_{\substack{x \to 1 \\ <}} x - 1 = \dots \text{ donc } \lim_{\substack{x \to 1 \\ <}} \frac{x+1}{x-1} = \dots \text{ D'où la droite d'équation } x = 1 \text{ est } \dots \text{ a. la courbe } \mathcal{C}.$$

Propriété:

Les opérations sur les limites à l'infini sont valables pour les limites en un réel, on se référera donc au paragraphe « Opérations sur les limites à l'infini \gg .

5 Limites de fonctions composées

Propriété:

Exemple:

On considère la fonction h définie sur \mathcal{R} par $-\sqrt{3x^2+4}$. On a $\lim_{x\mapsto +\infty} 3x^2+4=+\infty$ et $\lim_{X\mapsto +\infty} \sqrt{X}=$ donc $\lim_{x\mapsto +\infty} h(x)=$

Preuve:

admise