Limites de fonctions, cours, terminale STI

F.Gaudon

17 octobre 2010

Table des matières

1	Limites finies à l'infini						
2	Limites infinies à l'infini	3					
3	Opérations sur les limites à l'infini 3.1 Addition 3.2 Multiplication 3.3 Inverse 3.4 Quotient	5 5 5					
	3.5 Cas des limites à l'infini des fonctions polynômes ou rationnelles Limites en un réel Limites de fonctions composées	6					

1 Limites finies à l'infini

Soit f une fonction définie sur un intervalle $[a; +\infty[$ où $a \in \mathbb{R}$.

Définition:

Soit l un réel. On dit que f admet pour limite l en $+\infty$ (resp. $-\infty$) si les valeurs de f(x) peuvent être rendues aussi proches que l'on veut de l à condition de prendre les valeurs de x suffisament grandes (resp. suffisament petites). On note alors $\lim_{x\to +\infty} f(x) = l$ (resp. $\lim_{x\to -\infty} f(x) = l$). On dit aussi que f(x) tend vers l quand x tend vers $+\infty$ (resp. tend vers $-\infty$).

Propriété:

- Pour tout entier naturel k non nul, $\lim_{x\to+\infty}\frac{1}{x^k}=0$ et $\lim_{x\to-\infty}\frac{1}{x^k}=0$;
- $\lim_{x\to+\infty}\frac{1}{\sqrt{x}}=0$;
- Pour tout entier naturel non nul k, $\lim_{x\to+\infty} \frac{1}{x-k} = 0$ et $\lim_{x\to-\infty} \frac{1}{x-k} = 0$

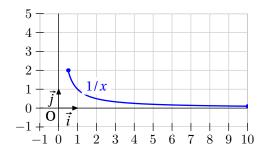
Définition:

Soit $l \in \mathbb{R}$ et soit \mathcal{C} la courbe représentative d'une fonction f dans un repère.

On dit que la droite d'équation y = l est asymptote horizontale à la courbe \mathcal{C} en $+\infty$ (resp. $-\infty$) si $\lim_{x\to+\infty} f(x) = l$ (resp. $\lim_{x\to-\infty} f(x) = l$.

Exemples:

 $\lim_{x\to+\infty}\frac{1}{x}=0$ et $\lim_{x\to-\infty}\frac{1}{x}=0$ donc la droite d'équation y=0 est asymptote à l'hyperbole en $+\infty$ et en $-\infty$.



2 Limites infinies à l'infini

Définition:

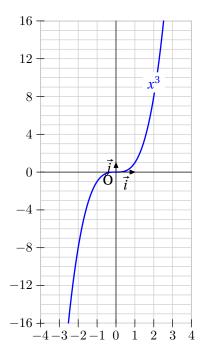
f admet pour limite $+\infty$ en $+\infty$ (resp. $-\infty$ en $+\infty$) si les valeurs de f(x) peuvent être rendues aussi grandes que l'on veut (resp. aussi petites que l'on veut) à condition de prendre les valeurs de x suffisament grandes. On note alors $\lim_{x\to+\infty}f(x)=+\infty$ (resp. $\lim_{x\to+\infty}f(x)=-\infty$). On dit aussi que f(x) tend vers $+\infty$ (resp. tend vers $-\infty$) quand x tend vers $+\infty$.

Remarque:

On définit de même les limites en $-\infty$.

Propriétés:

- Pour tout entier naturel k non nul, $\lim_{x\to+\infty} x^k = +\infty$;
- $\lim_{x\to-\infty} x = -\infty$;
- $\bullet \ \overline{\lim_{x \to -\infty} x^2} = +\infty;$
- $\lim_{x\to-\infty} x^3 = -\infty$;
- $\lim_{x\to+\infty} \sqrt{x} = +\infty$.



Définition:

Soient a et b deux réels avec $a \neq 0$. $\mathcal C$ est la courbe représentant une fonction f dans un repère.

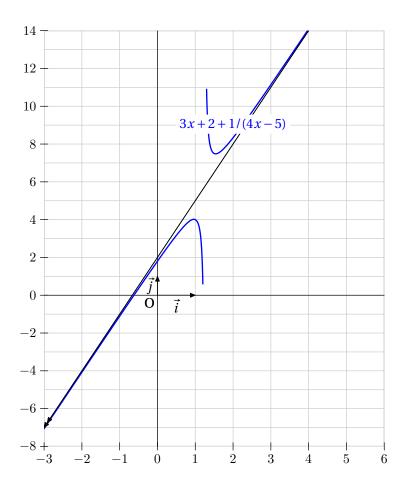
La droite d'équation y = ax + b est asymptote oblique à la courbe \mathcal{C} en $+\infty$ (resp. $-\infty$) si

$$\lim_{x \to +\infty} (f(x) - (ax + b)) = 0$$

$$(\operatorname{resp.} \lim_{x \to -\infty} (f(x) - (ax + b)) = 0)$$

Exemple:

Soit f la fonction définie pour tout $x \in \mathbb{R} - \{\frac{5}{4}\}$ par $f(x) = 3x + 2 + \frac{1}{4x - 5}$ et soit \mathcal{D} la droite d'équation y = 3x + 2. On a $f(x) - (3x + 2) = \frac{1}{4x - 5}$ pour tout réel $x \neq \mathbb{R} - \{\frac{5}{4}\}$ et $\lim_{x \to +\infty} \frac{1}{4x - 5} = 0$ donc \mathcal{D} est une asymptote oblique à \mathcal{C}_f en $+\infty$ (même démonstration en $-\infty$).



3 Opérations sur les limites à l'infini

3.1 Addition

c désigne $+\infty$ ou $-\infty$.

$\lim_{x\to c} f(x)$	$l \in \mathbb{R}$	$l \in \mathbb{R}$	$l \in \mathbb{R}$	$+\infty$	$-\infty$	$+\infty$
$\lim_{x\to c} g(x)$	$l' \in \mathbb{R}$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to c} (f+g)(x)$	l + l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	indéterminée

Exemple:

 $f(x) = x^2 + 3x$. On a $\lim_{x \to +\infty} x^2 = +\infty$ et $\lim_{x \to +\infty} 3x = +\infty$ donc $\lim_{x \to +\infty} f(x) = +\infty$. Pour $g(x) = x^2 - 3x$ en $+\infty$ on ne peut pas conclure en utilisant les règles précédentes.

3.2 Multiplication

$\lim_{x \to c} f(x)$	$l \in \mathbb{R}$	$l \in \mathbb{R}*$	$+/-\infty$	0	
$\lim_{x \to c} g(x)$	$l' \in \mathbb{R}$	$+/-\infty$	$+/-\infty$	$+/-\infty$	
$\lim_{x \to c} (fg)(x)$	ll'	$+/-\infty$	$+/-\infty$	indéterminée	

Exemple:

 $g(x) = x^2 - 3x$. On a pour tout réel x, g(x) = x(x-3). Or $\lim_{x \to +\infty} x = +\infty$ et $\lim_{x \to +\infty} x - 3 = +\infty$ donc $\lim_{x \to +\infty} g(x) = +\infty$.

3.3 Inverse

$\lim_{x\to c} f(x)$	$l \neq 0$	0+	0-	$+/-\infty$
$\lim_{x \to c} \frac{1}{f(x)}$	$\frac{1}{l}$	$+\infty$	$-\infty$	0

3.4 Quotient

$\lim_{x\to c} f(x)$	l	l	$l \neq 0$	0	$+/-\infty$	$+/-\infty$	$+/-\infty$
$\lim_{x\to c} g(x)$	$l' \neq 0$	$+/-\infty$	0	0	0	$l' \neq 0$	$+/-\infty$
$\lim_{x\to c} \frac{f(x)}{g(x)}$	$\frac{l}{l'}$	0	$+/-\infty$	indéterminée	$+/-\infty$	$+/-\infty$	indéterminée

Exemple:

 $f(x) = \frac{3}{4x+5}$. On a $\lim_{x\to+\infty} 3 = 3$ et $\lim_{x\to+\infty} 4x + 5 = +\infty$ donc $\lim_{x\to+\infty} f(x) = 0$. Pour $g(x) = \frac{3x^2+2}{4x+1}$ en $+\infty$, on ne peut pas conclure en utilisant les règles précédentes.

3.5 Cas des limites à l'infini des fonctions polynômes ou rationnelles

Propriété:

Soit f une fonction polynôme définie par $f(x) = a_0 + a_1x + \ldots + a_nx^n$ pour tout réel x avec $a_n \neq 0$ et n entier. Alors sa limite en l'infini $(+\infty)$ ou $-\infty$ est celle de son monôme de plus haut degré a_nx^n .

Preuve:

On le montre pour x tendant vers $+\infty$, la démonstration restant la même pour x tendant vers $-\infty$. On écrit $f(x) = x^n(\frac{a_0}{x^n} + \frac{a_1}{x^{n-1}} + \dots + \frac{a_{n-1}}{x} + a_n)$. On constate que $\lim_{x \to +\infty} \frac{a_0}{x^n} = 0$, $\lim_{x \to +\infty} \frac{a_1}{x^n} = 0$. Comme $a_n \neq 0$ et que x^n tend vers $+\infty$, la limite en $+\infty$ est bien donnée par la limite de $a_n x^n$.

Propriété:

En $+\infty$ et en $-\infty$, la limite de la fonction rationnelle f définie par $f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0}{b_p x^p + b_{p-1} x^{p-1} + \ldots + b_0}$ avec $a_n \neq 0$ et $b_p \neq 0$ est donnée par la limite de $\frac{a_n x^n}{b_n x^p}$.

Preuve:

On écrit $f(x) = \frac{x^n}{x^p} \frac{a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}} + a_0}{b_p + \frac{b_{p-1}}{x} + \dots + \frac{b_1}{x} + b_0}$ et on raisonne comme dans la démonstration précédente.

Preuve:

 $g(x) = \frac{3x^2+2}{x+1} : g$ a la même limite que $x \mapsto \frac{3x^2}{x} = 3x$ donc a pour limite $+\infty$ et $+\infty$.

4 Limites en un réel

On considère dans ce paragraphe une fonction f définie sur un ensemble D_f et a est l'extrémité d'un intervalle de D_f .

Définition:

- f admet pour limite $l\mathbb{R}$ (resp. $+\infty$) en a si les valeurs de f(x) peuvent être rendues aussi proches de l (resp. aussi grandes) que l'on veut à condition de prendre les valeurs de x suffisament proches de a. On note alors $\lim_{x\to a} f(x) = l$ (resp. $\lim_{x\to a} f(x) = +\infty$.
- f admet pour limite à droite $l \in \mathbb{R}$ (resp. $+\infty$) en a si les valeurs de f(x) peuvent être rendues aussi proches de l (resp. aussi grandes) que l'on veut à condition de prendre les valeurs de x supérieures à a suffisament proches de a.

On note alors $\lim_{x\to a} f(x) = l$ (resp. $\lim_{x\to a} f(x) = +\infty$).

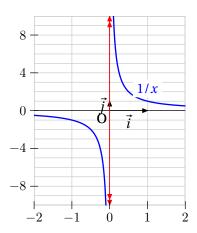
• f admet pour limite à gauche $l \in \mathbb{R}$ (resp. $+\infty$) en a si les valeurs de f(x) peuvent être rendues aussi proches de l (resp. aussi grandes) que l'on veut à condition de prendre les valeurs de x inférieures à a suffisament proches de a.

On note alors $\lim_{\substack{x\to a\\<}} f(x) = l$ (resp. $\lim_{\substack{x\to a\\<}} f(x) = +\infty$).

Exemple:

$$\lim_{\substack{x\to 0\\>}}\frac{1}{x}=+\infty$$

$$\lim_{x \to 0} \frac{1}{x} = -\infty$$



Définition:

Soit \mathcal{C} la courbe représentative de la fonction f dans un repère. On suppose que $a \in D_f$ mais que a est une extrémité de D_f . On dit que la droite d'équation x = a est asymptote verticale à \mathcal{C} si la limite ou la limite à droite ou à gauche de f en a est $+\infty$ ou $-\infty$.

Propriété:

Soit f une fonction telle que $f = \frac{g}{h}$ où g et h sont deux autres fonctions. Si g tend vers une limite non nulle et h tend vers 0 en un réel a, alors f tend vers l'infini, le signe restant à déterminer.

Exemple:

$$\lim_{\substack{x \to 1 \\ \text{$>$}}} x + 1 = 2 \text{ et } \lim_{\substack{x \to 1 \\ \text{$>$}}} x - 1 = 0^+ \text{ donc } \lim_{\substack{x \to 1 \\ \text{$>$}}} \frac{x+1}{x-1} = +\infty.$$

$$\lim_{\substack{x \to 1 \\ \text{$>$}}} x + 1 = 2 \text{ et } \lim_{\substack{x \to 1 \\ \text{$>$}}} x - 1 = 0^- \text{ donc } \lim_{\substack{x \to 1 \\ \text{$>$}}} \frac{x+1}{x-1} = -\infty$$
 D'où la droite d'équation $x = 1$ est asymptote verticale à la courbe \mathcal{C} .

Propriété:

Les opérations sur les limites à l'infini sont valables pour les limites en un réel, on se référera donc au paragraphe « Opérations sur les limites à l'infini ».

5 Limites de fonctions composées

Propriété:

a, b et l désignent des réel ou $+\infty$ ou $-\infty$. u et f sont deux fonctions. Si $\lim_{x\mapsto a} u(x) = b$ et $\lim_{x\mapsto b} f(X) = l$, alors $\lim_{x\mapsto a} f\circ u(x) = l$.

Exemple:

On considère la fonction h définie sur \mathcal{R} par $-\sqrt{3x^2+4}$. On a $\lim_{x\mapsto +\infty} 3x^2+4=+\infty$ et $\lim_{X\mapsto +\infty} \sqrt{X}=-\infty$ donc $\lim_{x\mapsto +\infty} h(x)=-\infty$.

Preuve:

admise

