Taux d'évolutions, cours de Terminale STG

1 Évolutions

1.1 De la valeur initiale à la valeur finale

Propriété et définition :

Si une quantité évolue à partir d'une valeur y_1 de départ d'un taux t (augmentation si t>0, diminution si t<0), alors la valeur finale y_2 est : ... 1+t est appelé le coefficient multiplicateur associé à la hausse ou à la baisse.

 $y1 \xrightarrow[\text{multiplication par } 1/(1+t)]{\text{multiplication par } 1/(1+t)} y2$

Propriété et définition :

On appelle coefficient multiplicateur réciproque le coefficient multiplicateur permettant de passer de y_2 à y_1 . Il vaut :

Le taux d'évolution associé est et est appelé taux d'évolution réciproque.

Preuve:

 $\dots = \dots$ $\dots = \dots$ $\dots = \dots$

Exemple:

Le prix du gasoil a augmenté de 20% en un an. Son prix actuel est de 1,07 $\!\!\!\!\!\!\!$ par litre.

Il y a un an le litre de gasoil valait

1.2 Trouver le taux d'évolution

Propriété:

Si une quantité varie d'une valeur initiale y_1 à une valeur finale y_2 alors le taux d'évolution est : ...

Preuve:

$$y_{2} = (1+t)y_{1}$$

$$y_{2} = y_{1} + ty_{1}$$

$$y_{2} - y_{1} = ty_{1}$$

$$t = \frac{y_{2} - y_{1}}{y_{1}}$$

Exemple:

L'indice CAC40 de la bourse de Paris est passé de 5327 points à 4784 points.

..

L'indice a donc baissé de

Remarque:

2 Évolutions successives

2.1 Taux global et coefficient multiplicateur global

Propriété et définition :

Si une quantité subit n évolutions successives (augmentations ou diminutions) de taux t_1, t_2, \ldots, t_n à partir d'une valeur initiale y_1 , alors la quantité finale est : ... est le coefficient multiplicateur global. ... est le taux global.

Exemple:

La population d'une ville augmente de 2,3% en un an puis diminue de 3,4% les deux années suivantes. ...

Le coefficient multiplicateur global est donc

Le taux global d'évolution est soit une baisse de

Attention : ce n'est pas la somme des taux successifs :

2.2 Taux moyen

Propriété et définition :

Si une quantité subit 2 évolutions successives de taux t_1 et t_2 , on appelle alors $coefficient\ multiplicateur\ moyen$ le nombre ... et on appelle $taux\ moyen$ le taux qui lui est associé, c'est à dire le nombre ...

Exemple:

Un prix initial de $100 \in$ subit une augmentation de 2 % puis une baisse de 30 %.
•••
Le coefficient multiplicateur global est
Le coefficient multiplicateur moyen est
En outre, soit de baisse annuelle en moyenne.

3 Indices de base 100

Définition:

On appelle indice i de base 100 d'une quantité y_2 par rapport à une quantité y_2 , le nombre : ...

Exemple:

On suit l'évolution du prix d'un produit : il valait $16 \in$ en 2006 et vaut $18,2 \in$ en 2007. ... L'indice du prix en 2007 par rapport à 2006 est donc

Propriété:

Soit t le taux d'évolution d'une quantité y_1 à une quantité y_2 . On suppose que l'on connaît l'indice i de y_2 par rapport à y_1 . Alors

• • •

Preuve:

On a $i = \frac{y_2}{y_1} \times 100$ par définition donc $\frac{y_2}{y_1} = \frac{i}{100}$. D'autre part, $t = \frac{y_2 - y_1}{y_1}$ par définition. Par conséquent,

$$t = \frac{y_2}{y_1} - \frac{y_1}{y_1}$$
$$= \frac{y_2}{y_1} - 1$$
$$= \frac{i}{100} - 1$$

Exemples:

On prend pour référence de l'indice des prix des produits manufacturés l'année 2004.

• Si l'indice en 2005 vaut 105,3 alors le taux d'augmentation entre 2004 et 2005 a été de :

•••

 \bullet Si entre 2004 et 2006, les prix ont augmenté de 9,7 % alors l'indice des prix en 2006 est :

...

Propriété:

Le taux d'évolution entre deux quantités est égal au taux d'évolution

Preuve:

Soient y la quantité de référence pour le calcul des indices, y_1 et y_2 les deux quantités, i_1 et i_2 les indices correspondants. Le taux d'évolution entre les quantités y_1 et y_2 est donné par :

$$t = \frac{y_2 - y_1}{y_1}$$

Or $i_1 = \frac{y_1}{y} \times 100$ donc $y_1 = \frac{y \times i_1}{100}$ et de même $y_2 = \frac{y \times i_2}{100}$. Donc $t = \frac{\frac{y \times i_2}{100} - \frac{y \times i_1}{100}}{\frac{y \times i_1}{100}}$ ce qui donne par simplification $t = \frac{y \times i_2 - y \times i_1}{y \times i_1}$ donc $t = \frac{i_2 - i_1}{i_1}$.

Exemple:

On étudie le chiffre d'affaires d'une entreprise sur plusieurs années :

Année	2001	2002	2003
Chiffre d'affaires	2500	2875	3125
Indice	100		

L'indice du chiffre d'affaires de 2002 par rapport à 2001 est :

•••

Celui de 2003 par rapport à 2001 est :

. .

Le taux d'évolution entre 2002 et 2003 est :

.

soit environ

4 Approximations de taux faibles

Propriété:

- Pour t « proche » de 0, $(1+t)^2 \approx 1+2t$. Deux évolutions successives pour un taux t voisin de 0 reviennent donc approximativement à une évolution de taux
- Pour t « proche » de 0, $(1+t)^n \approx 1+nt$ pour tout entier naturel n. n évolutions successives de taux t voisin de 0 reviennent donc approximativement à une évolution de taux ...

Propriété:

Pour t « proche » de 0, $\frac{1}{1+t} \approx 1-t$. Le taux réciproque d'une évolution pour un taux t voisin de 0 est donc approximativement de ...

Exemple:

• Un prix subit une augmentation de 0,2 %. Le prix après augmentation est alors de 70 \in .

Calcul du prix initial :
...
soit environ 69,86027.
Calcul du prix initial approché à l'aide de la propriété énoncée :
...
soit exactement 69,86.

Il y a donc une différence mais compte tenu de la situation elle est négligeable.

 \bullet Par contre, supposons que l'augmentation est maintenant de 2 %. Calcul du prix initial :

...
soit environ 68,63.
Calcul du prix initial approché à l'aide de la propriété énoncée :
...
soit environ 68,60.

La différence n'est plus négligeable.

