Fonction logarithme népérien, cours de terminale STG

1 Construction de la fonction logarithme népérien

Historiquement la fonction logarithme népérien a été introduite vers les XV^e XVI^e siècles afin de simplifier les calculs astronomiques. En particulier la problématique était de rechercher une fonction transformant les multiplications en additions (source : document d'accompagnement des programmes de terminale STG).

Propriété et définition :

Il existe une unique fonction notée la définie et dérivable sur $]0; +\infty[$ dont la dérivée est

$$ln'(x) = \dots$$

et qui vérifie

$$ln(1) = ...$$

Cette fonction est appelée fonction logarithme népérien.

Preuve:

Admis

2 Propriétés algébriques

Propriété:

Pour tous les réels a et b strictement positifs, $\ln(ab) = \ln(a) + \ln(b)$.

Preuve:

Admise.

Exemples:

Cette propriété permet de transformer les multiplications en additions :

- $\ln(6) = ...$
- ln(9) = ...
- ln(32) = ...
- ln(100) = ...

Conséquences:

Pour tous les réels a et b strictement positifs,

- $\ln(\frac{1}{b}) = \dots$
- $\ln(\frac{a}{b}) = \dots$
- pour tout entier relatif n, $\ln(a^n) = \dots$
- $\ln(\sqrt{a}) = \dots$

Preuve:

- D'une part, $\ln(b \times \frac{1}{b}) = \dots$ D'autre part, $\ln(b \times \frac{1}{b}) = \dots$ Donc $\ln(b) + \ln(\frac{1}{b}) = \dots$ d'où $\ln(\frac{1}{b}) = \dots$
- $\ln(\frac{a}{b}) = \ln(a \times \frac{1}{b}) = \dots$
- Découle directement du fait que $\ln(a^n) = \underline{\qquad}$
- $\ln(a) = \ln(\sqrt{a} \times \sqrt{a}) = \dots$

Exemples:

On peut ainsi manipuler de très grands nombres ou de très petits nombres :

- $\ln(10\,000) = \dots$
- ln(1024) = ...
- $\ln(1/10^8) = \dots$

3 Propriétés analytiques

3.1 Étude de la fonction

Propriété:

ln est sur $]0;+\infty[$.

Preuve:

Découle du fait que pour tout x réel strictement positif, $\ln'(x) = \dots$

Propriété et définition :

Preuve:

Découle de l'hypothèse que ln est dérivable sur et strictement croissante sur

3.2 Tableau de variation

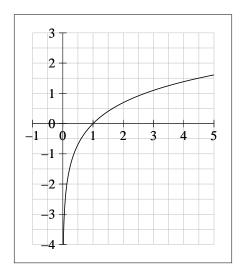
x	0	$+\infty$
$\ln'(x)$		
ln(x)		

3.3 Tableau de signe

x	0			$+\infty$
ln(x)		•••	 	

3.4 Représentation graphique

On parle de pour décrire une telle évolution.



4 Résolution d'équations et d'inéquations avec le logarithme népérien

Propriété:

- ln(a) = ln(b) si et seulement si
- $\ln(a) \ge \ln(b)$ si et seulement si

Preuve:

Découle de l'hypothèse que ln est dérivable sur $]0; +\infty[$ et strictement croissante.

Exemples:

• $\ln(x-1) = 0$

Première étape : Détermination de l'ensemble de définition.

On a $x-1 > \dots$ si et seulement si $x > \dots$ donc l'ensemble de définition est

Deuxième étape : Résolution de l'équation.

On a $\ln(x-1)=0$ qui s'écrit $\ln(x-1)=\ln(\dots)$ ce qui équivaut à $x-1=\dots$ donc $x=\dots$

Comme est dans l'ensemble de définition, est donc l'unique solution de l'équation.

• $\ln(x-1) = 2$

Première étape : L'ensemble de définition est le même que dans l'exemple précédent.

Deuxième étape : $\ln(x-1) = 2$ s'écrit $\ln(x-1) = 2\ln(\dots)$ ce qui équivaut à $\ln(x-1) = \ln(\dots)$ donc $x-1 = \dots$ et $x = \dots$ (on ne peut pas simplifier davantage sans perdre la valeur exacte). Comme appartient à l'ensemble de définition est l'unique solution.

• $\ln(2x-1) < 5$

Première étape : Détermination de l'ensemble de définition.

On a $2x-1 > \dots$ qui donne $x > \dots$ donc l'ensemble de définition est

Deuxième étape : Résolution de l'inéquation.

 $\ln(2x-1) < 5$ s'écrit aussi $\ln(2x-1) < 5\ln(.....)$ c'est à dire $\ln(2x-1) < \ln(......)$ ce qui équivaut

à $2x-1 < \dots$ donc à $x < \dots$ (on ne peut à nouveau pas simplifier plus). Comme

est dans l'ensemble de définition, est l'unique solution de l'inéquation.

