Dérivation de fonctions, cours, terminale STG

F.Gaudon

27 mai 2009

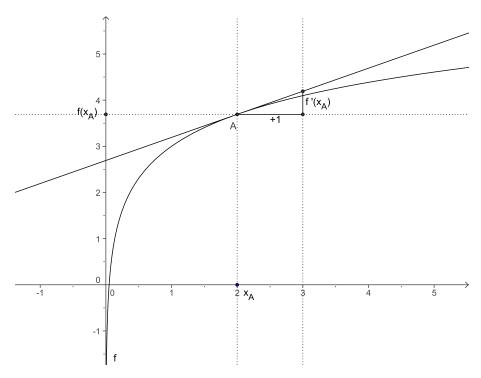
Table des matières

1	Fonction dérivée	2			
2	Dérivées usuelles	3			
3	pérations sur les fonctions dérivables				
	3.1 Somme	3			
	3.2 Multiplication par un nombre réel k	4			
	3.3 Produit	4			
	3.4 Quotient	4			
	3.5 Puissances	5			

1 Fonction dérivée

Définition:

Soit f une fonction définie sur un intervalle I et dont la courbe représentative C_f admet en un point d'abscisse x_A avec $x_A \in I$ une tangente. Le nombre dérivé de f en x_A noté $f'(x_A)$ est le coefficient directeur de cette tangente.



Propriété (rappel):

Le coefficient directeur m d'une droite (d) passant par des points A et B de coordonnées $(x_A; y_A)$ et $(x_B; y_B)$ est donnée par :

$$m = \frac{y_B - y_A}{x_B - x_A}$$

Propriété:

La tangente $\mathcal{T}_{\mathcal{A}}$ au point A d'abscisse x_A à la courbe \mathcal{C}_f admet une équation réduite de la forme $y = f'(x_A) + p$ où p est un nombre réel.

Définition:

- Une fonction f est dérivable sur un intervalle I si en tout réel a de I il existe un nombre dérivé f'(a), c'est à dire si en tout point A de la courbe \mathcal{C}_f il existe une tangente à la courbe en ce point.
- La fonction qui, à tout point a de I, associe le nombre dérivé de f en a s'appelle la fonction dérivée de f et est notée f'.

Exemple:

Soit $f: x \longmapsto 2x - 3$ définie sur $I = \mathcal{R}$. On a le tableau de valeurs suivant :

x	0	1
f(x)	-3	-1

La courbe représentative C_f admet une tangente en tout point. Cette tangente est la courbe C_f ellemême. Pour tout élément a de \mathcal{R} on a donc f'(a) = 2. La fonction $f: x \longmapsto 2x - 3$ a donc pour dérivée la fonction $f': x \longmapsto 2$ sur \mathcal{R}

2 Dérivées usuelles

f(x)	f'(x)	$\mathcal{D}_{f'}$
k	0	\mathbb{R}
\overline{x}	1	\mathbb{R}
mx + p	m	\mathbb{R}
x^2	2x	\mathbb{R}
x^n	nx^{n-1}	\mathbb{R}
$\frac{1}{x}$	$-\frac{1}{x^2}$	\mathbb{R}^*
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$]0;+\infty[$

Preuves:

Admises.

Exemple:

Soit \bar{f} la fonction définie sur \mathbb{R} par f(x) = 5 - 3x pour tout x réel f est une fonction affine, elle est dérivable sur \mathbb{R} et pour tout réel x on a f'(x) = -3.

3 Opérations sur les fonctions dérivables

Les démonstrations de ce paragraphe sont admises.

3.1 Somme

Propriété:

Soient u et v deux fonctions définies et dérivables sur un intervalle I, alors u+v est définie et dérivable sur I et :

$$(u+v)' = u' + v'$$

Exemple:

Soit f la fonction définie sur \mathbb{R}^+ par $f(x)=x+\sqrt{x}$. Alors on peut poser u(x)=x et $v(x)=\sqrt{x}$. u et v sont deux fonctions de référence. On a pour tout x strictement positif u'(x)=1 et $v'(x)=\frac{1}{2\sqrt{x}}$ donc $f'(x)=1+\frac{1}{2\sqrt{x}}$.

3.2 Multiplication par un nombre réel k

Propriété:

Soient u une fonction définie et dérivable sur un intervalle I et k un nombre réel, alors ku est définie et dérivable sur I et :

$$(ku)' = ku'$$

Exemple:

Soit f la fonction définie sur \mathbb{R} par $f(x) = 5x^3$. Alors on peut poser $u(x) = x^3$, la fonction u est une fonction de référence et on a pour tout x réel $u'(x) = 3x^2$ donc $f'(x) = 5 \times 3x^2 = 15x^2$.

3.3 Produit

Propriété:

Soient u et v deux fonctions définies et dérivables sur un intervalle I, alors uv est dérivable sur I et

$$(uv)' = u'v + v'u$$

Exemple:

Soit f la fonction définie pour tout réel x par f(x) = (6-7x)(3+4x). On peut poser u(x) = 6-7x et v(x) = 3+4x qui sont des fonctions affines. Donc pour tout réel x, u'(x) = -7 et v'(x) = 4 et f'(x) = u'(x)v(x) + u(x)v'(x) = -7(3+4x) + 4(6-7x) c'est à dire f'(x) = -21-28x+24-28x = 3-56x.

3.4 Quotient

Propriété:

Soient u et v deux fonctions définies et dérivables sur un intervalle I, avec pour tout x de I, $v(x) \neq 0$, alors $\frac{u}{v}$ est définie et dérivable sur I et

$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

Exemple:

Soit f la fonction définie pour tout x réel différent de $\frac{3}{5}$ par $f(x) = \frac{x^2}{5x-3}$. On peut poser $u(x) = x^2$ et v(x) = 5x - 3. On a alors u'(x) = 2x et v'(x) = 5 d'où $f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{2x(5x-3) - 5x^2}{(5x-3)^2} = \frac{5x^2 - 6x}{(5x-3)^2}$ (on ne développe pas le numérateur car cette écriture sera la plus pratique dans les applications des dérivées).

3.5 Puissances

Propriété:

Si u est une fonction définie sur un intervalle I et dérivable en $x \in I$ et si n est un entier naturel, alors la fonction définie par $f(x) = u(x)^n$ est dérivable en x et $f'(x) = nu'(x)u(x)^{n-1}$ que l'on écrit aussi $(u^n)' = nu'u^{n-1}$.

Exemple:

Soit f la fonction définie sur \mathbb{R} par $f(x) = (2 - 5x)^2$. On a $f'(x) = -5 \times 2 \times (2 - 5x) = -10(2 - 5x)$.

