Applications de la dérivation

Applications de la dérivation, TSTG

F. Gaudon

http://mathsfg.net.free.fr

30 mai 2009

- Signe de la dérivée et variations de la fonction
 - Du sens de variation de la fonction au signe de la dérivée
 - Du signe de la dérivée au sens de variation

- Dérivée et tableau de variations
 - Dérivée et tableau de variation d'une fonction
 - Dérivée, extrema et tableau de variation

Du sens de variation de la fonction au signe de la dérivée

Plan

- Signe de la dérivée et variations de la fonction
 - Du sens de variation de la fonction au signe de la dérivée
 - Du signe de la dérivée au sens de variation
- Dérivée et tableau de variations
 - Dérivée et tableau de variation d'une fonction
 - Dérivée, extrema et tableau de variation

Propriété

Soit f une fonction dérivable sur un intervalle I.

- Si f est croissante sur I, alors pour tout réel x de I,;
- si f est décroissante sur l, alors pour tout réel x de l,;
- si f est constante sur l, alors pour tout réel x de l,

Exemple:

Soit f une fonction définie sur [-3; 5] et telle que :

X	-3		-1		0		5
variations de	4				1		
f(x)		\		7		\	
			-2				0

Alors la fonction dérivée f' a pour tableau de signes :

X				
f'(x)		 	 	

- Signe de la dérivée et variations de la fonction
 - Du sens de variation de la fonction au signe de la dérivée
 - Du signe de la dérivée au sens de variation
- Dérivée et tableau de variations
 - Dérivée et tableau de variation d'une fonction
 - Dérivée, extrema et tableau de variation

Propriété

- Si pour tout réel x de I, f'(x) ≥ 0 (resp. f'(x) > 0 sauf en un nombre fini de points où elle s'annule), alors f est (resp. strictement) sur I;
- si pour tout réel x de I, f'(x) ≤ 0 (resp. f'(x) < 0 sauf en un nombre fini de points où elle s'annule), alors f est (resp. strictement) sur I;
- si pour tout réel x de I, f'(x) = 0, alors f estsur I.

Exemple avec un tableau de signes :

Soit f une fonction définie sur [-3; 5] et telle que :

X	-3		-2		0		5
signe de $f'x$)		+	0	-	0	+	

Le tableau de variations de f est :

X				
variations de				
f(x)				

Exemples par le calcul :

- On considère la fonction f définie sur R par f(x) = 4x³ + 5. f est dérivable sur R et pour tout réel x, f'(x) =
 Donc pour tout réel x, f'(x).....0 et par conséquent, f est une fonction sur R.

Plan

- Signe de la dérivée et variations de la fonction
 - Du sens de variation de la fonction au signe de la dérivée
 - Du signe de la dérivée au sens de variation
- Dérivée et tableau de variations
 - Dérivée et tableau de variation d'une fonction
 - Dérivée, extrema et tableau de variation

Exemple 1:

On a donc le tableau de variations suivant :

X	$-\infty$		$+\infty$
f'(x)		 0	
f(x)			

Exemple 2:

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = x + \frac{1}{x}$. Pour tout réel $x \neq 0$,

$$f'(x) = \dots$$

= ...

On a donc le tableau de variation :

X	$-\infty$				$+\infty$
f'(x)		 	 	 	
f(x)			 		

Plan

- Signe de la dérivée et variations de la fonction
 - Du sens de variation de la fonction au signe de la dérivée
 - Du signe de la dérivée au sens de variation
- Dérivée et tableau de variations
 - Dérivée et tableau de variation d'une fonction
 - Dérivée, extrema et tableau de variation

Définition

Soit f une fonction définie sur un intervalle I et x_0 un réel de I.

- Dire que $f(x_0)$ est un maximum local (resp. minimum local) de f signifie que l'on peut trouver un intervalle ouvert J inclus dans I et contenant x_0 tel que pour tout x de J, $f(x) \le f(x_0)$ (resp. $f(x) \ge f(x_0)$).
- Un minimum local ou un maximum local est appelé un extremum local.

Propriété

Si f est une fonction définie et dérivable sur un intervalle l ouvert (c'est à dire de la forme]a; b[)

- Si f admet un maximum ou un minimum en $x_0 \in I$ avec x_0 , alors $f'(x_0) = \dots$;
- si f' s'annule en x₀ en changeant de signe, alors f admet en x₀ un

Visualisation:

Cas d'un minimum :

X	<i>x</i> ₀	
f(x)	 	

Cas d'un maximum :

X	<i>x</i> ₀	
f(x)		