Récurrence et suites, cours, terminale S

1 Démonstration par récurrence

Axiome de récurrence :

Soit P(n) une propriété qui dépend d'un nombre entier naturel n et soit n_0 un nombre entier naturel. Si la propriété P(n) vérifie les deux conditions suivantes :

- Initialisation : $P(n_0)$ est vraie;
- Hérédité : Si P(k) est vraie pour un nombre entier naturel $k \ge n_0$ alors P(k+1) est vraie ;

Alors pour tout nombre entier naturel $n \ge n_0$, P(n) est vraie.

Exemple:

Démontrons la propriété suivante : Si u est une fonction définie et dérivable sur un intervalle I, alors pour tout entier naturel $n \le 1$, alors u^n est dérivable sur I et $(u^n)' = nu'u^{n-1}$.

- Initialisation : pour $n=1, u'=1 \times u' \times u^{1-1}$ donc la propriété est vraie au rang 1.
- Hérédité : Supposons la propriété vraie pour un certain rang $k \geq 1$, c'est à dire que u^k est dérivable sur I et que $(u^k)' = ku'u^{k-1}$.

Alors $u^{k+1} = u^k \times u$ donc, u^k et u étant dérivables, le produit u^{k+1} est dérivable sur I.

Par ailleurs, $(u^{k+1})' = (u^k)' \times u + u^k \times u'$ d'après la formule de dérivation des produits.

Donc $(u^{k+1})' = ku'u^{k-1} \times u + u^k \times u'$ par hypothèse de récurrence

Finalement, on a donc $(u^{k+1})' = ku'u^k + u'u^k = (k+1)u'u^k$ ce qui est l'écriture de la propriété au rang k+1: la propriété est donc vraie au rang k+1 et donc héréditaire.

• Conclusion : d'après l'axiome de récurrence, la propriété est donc vraie pour tout rang $n \ge 1$ avec n entier naturel.

2 Étude de suites

2.1 Suites majorées, minorées, bornées

Définition:

Soit (u_n) une suite définie à partir d'un certain rang $p \in \mathbb{N}$. (u_n) est dite :

- $major\acute{e}$ à partir du rang p s'il existe un réel M tel que pour tout entier naturel $n \geq p$, $u_n \leq M$;
- $minor\acute{e}$ à partir du rang p s'il existe un réel m tel que pour tout entier naturel $n \ge p$, $u_n \ge m$;
- $born\acute{e}$ à partir du rang p si elle est majorée et minorée à partir du rang p.

Exemples:

Suite définie en fonction de n: Soit (u_n) la suite définie par $u_n = 3 - \frac{4}{n}$ pour tout entier naturel n non nul.

Alors pour tout $n \in \mathbb{N}$, $u_n - 3 = \dots$ d'où le signe de $u_n - 3$ est c'est à dire $u_n \dots 3$. La suite (u_n) est donc par 3.

Suite définie par récurrence : Soit (u_n) la suite définie par $u_0 = 0$ et pour tout entier naturel n, $u_{n+1} = \sqrt{u_n + 5}$.

Montrons par récurrence que pour tout entier naturel $n \ge 1$, $0 < u_n < 3$.

- Initialisation : Pour $n = 1, u_1 = \dots$ donc
- Conclusion : par l'axiome de récurrence, on a obtient donc pour tout $n \ge 1$, $0 < u_n < 3$.

2.2 Étude de variations de suites récurrentes

Exemple:

On considère la suite (u_n) définie par $u_0 = 3$ et $u_{n+1} = 0, 3u_n + 1$. Soit f la fonction définie sur \mathbb{R} par f(x) = 0, 3x + 1. f est sur \mathbb{R} . Montrons par récurrence que (u_n) est une suite décroissante, c'est à dire que pour tout entier naturel n, $u_n - u_{n-1}$

- Initialisation : $u_1 u_0 = \dots$;
- Hérédité : on suppose que pour un rang $k \geq 1$, $u_k u_{k-1} < 0$. Alors $u_k < u_{k-1}$ et, comme la fonction f est strictement, $f(u_k)$ $f(u_{k-1})$, c'est à dire u_{k+1} u_k donc $u_{k+1} - u_k$0.
 - Par conséquent, la propriété est vraie au rang k+1 et est donc héréditaire.
- Conclusion : Par récurrence, on donc pour tout $n \ge 1$, $u_n < u_{n-1}$, c'est à dire que la suite (u_n) est décroissante.

