Fonction logarithme népérien, cours, terminale S

1 Définition et propriétés algébriques

Définition:

Propriétés:

- Pour tout réel x > 0, $e^{\ln(x)} = \dots$;
- pour tout réel x, $\ln(e^x) = \dots$;
- ln(1) = et ln(e) =

Preuve:

Conséquences directes de la définition.

Propriété (équation fonctionnelle):

Pour tous les réels a et b strictement positifs, $\ln(ab) = \dots$

Preuve:

Pour tous les réels a et b strictement positifs, $e^{\ln(a)+\ln(b)} = \dots \ln(a) + \ln(b)$ est donc une solution de l'équation $\dots \dots \dots$. Or par définition de \ln , l'unique solution de cette équation est $\ln(ab)$. D'où $\ln(ab) = \ln(a) + \ln(b)$.

Propriétés:

Pour tous les réels a et b strictement positifs,

- $\ln(\frac{1}{a}) = \dots;$
- $\ln(\frac{\ddot{a}}{b}) = \dots;$
- pour tout entier relatif n, $\ln(a^n) = \dots$;
- $\ln(\sqrt{a}) = \dots;$

Preuve:

• D'une part, $\ln(a \times \frac{1}{a}) = \dots$ D'autre part, $\ln(a \times \frac{1}{a}) = \ln(a) + \ln(\frac{1}{a})$

Donc $\ln(a) + \ln(\frac{1}{a}) = \dots$

• $\ln(\frac{a}{b}) = \ln(a \times \frac{1}{b}) = \dots$ d'après ce qui précède.

• Par récurrence pour n entier naturel.

Initialisation: Pour tout a > 0, $\ln(a^0) = \ln(1) = 0$ et $0 \ln(a) = 0$ d'où $\ln(a^0) = 0 \ln(a)$.

La propriété est donc vraie au rang 0. Hérédité : On suppose que pour un entier naturel k, $\ln(a^k) = k \ln(a).$

Alors $\ln(a^{k+1}) = \ln(a^k \times a) = \ln(a^k) \ln(a)$ car $\ln(ab) = \ln(a) + \ln(b)$.

Puis $\ln(a^k) \ln(a) = k \ln(a) \ln(a)$ par hypothèse de récurrence.

Donc $\ln(a^{k+1}) = (k+1)\ln(a)$. La propriété est donc héréditaire.

Conclusion: Par récurrence, pour tout entier naturel n, $\ln(a^k) = k \ln(a)$.

On utilise en plus, le fait que $\ln(a^n) = \ln(\frac{1}{a^{-n}})$ si n est un entier négatif.

• $\ln(a) = \ln(\sqrt{a} \times \sqrt{a}) = \dots$. D'où le résultat.

Exemples:

- $\ln(65536) = \dots$
- ln(81) = ...
- $\ln(81 \times 65536) = ...$
- $\ln(1/10^8) = \dots$

2 Étude de la fonction logarithme népérien

Dérivabilité 2.1

Propriété:

La fonction ln est dérivable sur $]0; +\inf[$ et

$$\ln'(x) = \dots$$

Preuve:

Dérivabilité admise. Pour montrer la formule on part de $e^{\ln(x)} = x$ pour tout x > 0. En dérivant on obtient (en tenant compte de la fonction composée de la forme e^u), $(\ln(x))'e^{\ln(x)} = 1$ donc $(\ln(x))'x = 1$ donc $(\ln(x))' = \frac{1}{x}$.

Propriété:

La fonction ln est strictement sur $]0; +\infty[$.

Preuve:

La dérivée est $x \mapsto \dots$ qui est

2.2 Égalités et inégalités

Propriétés:

Pour tous les réels a et b strictement positifs,

- ln(a) = ln(b) si et seulement si;
- $\ln(a) < \ln(b)$ si et seulement si

Preuve:

- $\ln(a) = \ln(b)$ si et seulement si c'est à dire
- $\ln(a) < \ln(b)$ si et seulement si c'est à dire c'est à dire

Exemples d'application à la résolution d'équations et d'inéquations :

- $e^x = 2$ équivaut à
- Résolution de ln(3x + 4) = 5

On recherche d'abord l'ensemble de définition : 3x + 4 > 0 si et seulement si

L'ensemble de définition est donc ...

On résout ensuite l'équation dans cet ensemble de définition :

 $\ln(3x+4)=5$ équivaut à $e^{\ln(3x+4)}=e^5$ c'est à dire à

. . .

On vérifie que la solution est bien dans l'ensemble de définition : ...

Il y a donc une unique solution est donc

• Résolution de $\ln(3x+4) < 5$:

On recherche d'abord l'ensemble de définition :

L'ensemble de définition est ...

On résout ensuite l'inéquation dans cet ensemble de définition : $\ln(3x+4) < 5$ équivaut à $e^{\ln(3x+4)} < e^5$ c'est à dire à

. . .

L'ensemble des solutions est l'intersection de l'ensemble de définition et de l'ensemble déterminé par la résolution de l'inéquation :

. . .

2.3 Limites

Propriété, limites:

On a $\lim_{x \to +\infty} \ln(x) = \dots$ et $\lim_{x \to 0^+} \ln(x) = \dots$. La droite d'équation est donc une asymptote à la courbe en 0.

Preuve:

Soit M un réel. Pour tous les réels x tels que $x > e^M$ (il en existe car $\lim_{x \to +\infty} e^x = +\infty$), la fonction ln est strictement sur $]0; +\infty[$ donc $\ln(x) > \ln(e^M)$ d'où $\ln(x) > \dots$ La fonction ln a donc bien pour limite en $+\infty$.

Pour x > 0, on pose $X = \frac{1}{x}$. Alors $\ln(x) = \ln(\frac{1}{X}) = -\ln(X)$. Or $\lim_{x \to 0, x > 0} X = \dots$. Or $\lim_{X \to +\infty} (-\ln(X)) = \dots$ donc $\lim_{x \to 0} \ln(x) = \dots$.

2.4 Tableau de variation

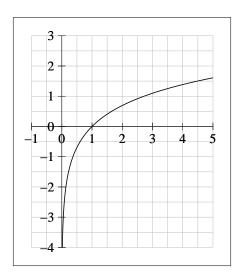
x	0	$+\infty$
$\ln'(x)$		
$\ln(x)$		

2.5 Tableau de signe

x	0		$+\infty$
$\ln(x)$		 	

2.6 Représentation graphique

On parle de croissance logarithmique pour décrire une telle évolution.



2.7 Dérivation de fonctions composées avec ln

Propriété:

Si u est une fonction strictement positive et dérivable sur un intervalle I, alors la fonction composée $\ln(u)$ est définie et dérivable sur I et on a :

$$(\ln(u))' = \dots$$

2.8 Croissances comparées

Propriétés : croissances comparées :

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = \dots$$

$$\lim_{x \to 0} x \ln(x) = \dots$$
et
$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = \dots$$

Preuve:

- Pour x > 0, on pose $X = \ln(x)$ d'où $\frac{\ln(x)}{x} = \dots$ Or $\lim_{x \to +\infty} X = \dots$ et $\lim_{X \to +\infty} \frac{X}{e^X} = \dots$ D'où le résultat.
- On pose $X = \lim_{x\to 0} x \ln(x) =$
- On considère pour $x \neq 1$, $\frac{\ln(x) \ln(1)}{x 1}$. In est dérivable en 1 donc ce taux d'accroissement a une limite qui est le nombre dérivé de ln en 1, c'est à dire 1.

5

