Fonctions exponentielles, cours, terminale S

F.Gaudon

27 juin 2013

Table des matières

1	Définitions et propriétés algébriques	ons et propriétés algébriques 2			
2	Étude de la fonction2.1 Dérivabilité2.2 Tableau de variations2.3 Courbe représentative2.4 Tableau de signe	4			
3	Limites	4			
4	Étude de fonctions composées avec la fonction exponentielle				

1 Définitions et propriétés algébriques

Propriété:

Soit f une fonction définie, dérivable sur \mathbb{R} , vérifiant f' = f et telle que f(0) = 1. Alors f ne s'annule pas sur \mathbb{R} .

Preuve:

Soit h la fonction définie sur \mathbb{R} par h(x) = f(x)f(-x). h est dérivable sur \mathbb{R} et h'(x) = f'(x)f(-x) + f(x)(-f(-x)) = f(x)f(-x) - f(x)f(-x) = 0.

On en déduit que h est constante. Or h(0) = f(0)f(-0) = 1 donc pour tout réel x, f(x)f(-x) = 1 ce qui assure que f ne s'annule pas.

Propriété et définition :

On appelle fonction exponentielle de base e l'unique fonction f dérivable sur \mathbb{R} telle que f' = f et f(0) = 1.

Preuve:

L'existence est admise. Montrons l'unicité d'une telle fonction.

Tout d'abord, d'après la propriété précédente, une telle fonction ne s'annule pas.

Montrons maintenant l'unicité. Soient donc f et g deux fonctions définies sur \mathbb{R} et vérifiant f' = f, g' = g, f(0) = 1 et g(0) = 1.

On vient de montrer que g ne s'annule pas, on peut donc considérer la fonction q définie sur \mathbb{R} par $q = \frac{f}{g} \cdot q$ est dérivable sur \mathbb{R} et $q'(x) = \frac{f'g - g'f}{g^2} = \frac{fg - gf}{g^2} = 0$.

Par conséquent, la fonction q est constante sur \mathbb{R} . Or $q(0) = \frac{f(0)}{g(0)} = \frac{1}{1}$ d'où $\frac{f}{g} = 1$ et f = g, ce qui achève la démonstration.

Notation:

On note e l'image $\exp(1)$ de 1 par la fonction exponentielle. $e \approx 2,71$. Pour tout x réel, $\exp(x)$ est noté e^x et on lit « exponentielle x » ou « e exposant x ».

Propriétés:

Pour tous les réels a et b réel,

$$\exp(a+b) = \exp(a)\exp(b)$$

c'est à dire

$$e^{a+b} = e^a e^b$$

Preuve:

Soit b un réel. On a vu plus haut que exp ne s'annule pas. Pour tout réel b, on peut donc définir la fonction h sur \mathbb{R} par $h(x) = \frac{f(b+x)}{f(x)}$.

La fonction h est dérivable sur \mathbb{R} et $h'(x) = \frac{f'(a+x)f(x)-f(a+x)f'(x)}{f(x)^2}$. Or f' = f donc $h'(x) = \frac{f(a+x)f(x)-f(a+x)f(x)}{f(x)^2} = 0$. La fonction h est donc une constants

0. La fonction h est donc une constante. Or $h(0) = \frac{f(a+0)}{f(0)} = \frac{f(a)}{1} = f(a)$. D'où pour tout réel x, h(x) = f(a), c'est à dire $\frac{f(a+x)}{f(x)} = f(a)$ et f(a+x) = f(a)f(x).

Conséquences:

pour tout entier relatif n et pour tous les réels x et x' on a :

- $\frac{1}{\exp(x)} = \exp(-x)$ c'est à dire $\frac{1}{e^x} = e^{-x}$; $\frac{\exp(x)}{\exp(x')} = \exp(x x')$ c'est à dire $\frac{e^x}{e^{x'}} = e^{x x'}$; $(\exp(x))^n = \exp(nx)$ c'est à dire $(e^x)^n = e^{xn}$;

Preuve:

- Pour tous les réels x, $\exp(x) \exp(-x) = \exp(x-x) = \exp(0) = 1$ donc $\exp(-x) = \frac{1}{\exp(x)}$. Pour tous les réels x et x', $\frac{\exp(x)}{\exp(x')} = \exp(x) \times \frac{1}{\exp(x')}$ et on utilise le résultat précédent. Les cas n=0 et n=1 sont évidents. Le cas n=2 correspond au premier point de la propriété.
- Si pour un rang n entier supérieur à 2, $\exp(x)^n = \exp(nx)$, alors au rang n+1, on obtient $\exp(x)^{n+1} = \exp(x)^n \exp(x)$ d'après le premier point de la propriété.

Par l'hypothèse de récurrence au rang n, on peut dire que $\exp(x)^n = \exp(nx)$ donc $\exp(x)^{n+1} =$ $\exp(nx)\exp(x) = \exp((n+1)x)$. La propriété est donc vraie au rang n+1. Par conséquent, par récurrence, la propriété est vraie pour tous les rangs n positifs. Si n < 0, on utilise la première propriété.

Étude de la fonction 2

2.1Dérivabilité

Propriétés:

- La fonction exponentielle exp est dérivable sur \mathbb{R} et pour tout x réel $\exp'(x) = \exp(x)$.
- la fonction exponentielle exp est strictement positive.
- la fonction exponentielle exp est strictement croissante sur $]-\infty;+\infty[$;

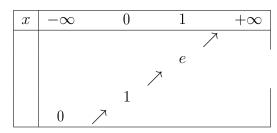
Preuve:

Le premier point n'est qu'une reécriture de la définition.

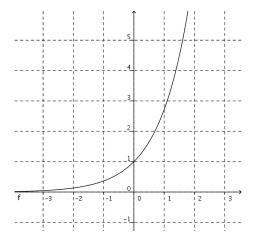
Pour tous les réels x et y, f(x+y) = f(x)f(y) d'où pour x=y, $f(2x) = f(x)^2$ ce qui assure que f(x)est strictement positif.

Comme f' = f, on en déduit que f' > 0 c'est à dire f est strictement croissante sur $] - \infty; +\infty[$.

2.2 Tableau de variations



2.3 Courbe représentative



2.4 Tableau de signe

x	$-\infty$		$+\infty$
$\exp(x)$		+	

Propriété:

Pour tous les réels x et y:

$$e^x = e^y \Leftrightarrow x = y$$

et

$$e^x < e^y \Leftrightarrow x < y$$

3 Limites

Propriété:

$$\lim_{x\to+\infty} e^x = +\infty$$
 et $\lim_{x\to-\infty} e^x = 0$.

Preuve:

- Montrons d'abord que pour tout réel x, $\exp(x) \le x$. Pour cela, soit f la fonction définie par $f(x) = \exp(x) - x$ pour tout réel x. f est dérivable sur \mathbb{R} et $f'(x) = \exp(x) - 1$.
 - $f'(x) \ge 0$ si et seulement si $\exp(x) 1 \ge 0$ c'est à dire $\exp(x) \ge 1$. Comme $\exp(0) = 1$ et exp est croissante sur \mathbb{R} , on déduit que pour tout $x \ge 0$, $\exp(x) \ge 1$ et $f'(x) \ge 0$. Par conséquent, f est croissante sur $[0; +\infty[$ et puisque f(0) = 1, on a pour tout $x \ge 0$, $f(x) \ge 1$ donc $\exp(x) x \ge 1$ et $\exp(x) \ge x + 1$.
 - Comme $\lim_{x\to+\infty} x+1=+\infty$, par comparaison on obtient $\lim_{x\to+\infty} =+\infty$.
- On utilise l'égalité $\exp(-x) = \frac{1}{\exp(x)}$. $\lim_{x \to -\infty} (-x) = +\infty$ et donc $\lim_{x \to -\infty} \exp(-x) = \lim_{x \to +\infty} \frac{1}{\exp(x)}$. D'après ce qui précède $\lim_{x \to +\infty} \exp(x) = +\infty$ donc $\lim_{x \to +\infty} \frac{1}{\exp(x)} = 0$.

Propriété:

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

que l'on traduit en disant que « la fonction exponentielle l'emporte sur la fonction $x \mapsto x$ en $+\infty$.

$$\lim_{x \to -\infty} x e^x = 0$$

que l'on traduit en disant que « la fonction exponentielle l'emporte sur la fonction $x\mapsto x$ en $-\infty$.

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Preuve:

- Soit f la fonction définie par $f(x) = e^x \frac{1}{2}x^2$. On a $f'(x) = e^x x$ et $f''(x) = e^x 1$. On a vu précédemment (dans la démonstration de $\lim x \to +\infty e^x = +\infty$) que pour tout réel $x \ge 0$, $e^x \ge 1$ donc $f''(x) \ge 0$. D'où f' est croissante sur $[0; +\infty[$. Comme f'(0) = 1, on déduit que f' est strictement positive sur $[0; +\infty[$ et que f est strictement croissante. Par suite, de f(0) = 1 on déduit que pour tout réel x, f(x) > 0 c'est à dire $e^x > \frac{1}{2}x^2$ et $\frac{e^x}{x} > \frac{1}{2}x$. De $\lim_{x \to +\infty} \frac{1}{2}x = +\infty$ on déduit le résultat voulu.
- On remarque que $\lim_{x\to-\infty} xe^x = \lim_{x\to+\infty} (-x)e^{-x} = \lim_{x\to+\infty} \frac{-x}{e^x} = 0$.
- exp est dérivable en 0 et le nombre dérivé en 0 est 1 donc $\lim_{x\to 0} e^x e^0x 0 = \lim_{x\to 0} e^x 1x = 1$.

4 Étude de fonctions composées avec la fonction exponentielle

Propriété:

Soit u est une fonction dérivable sur un intervalle I. La fonction e^u est dérivable sur I et

$$(e^u)' = u'e^u$$

;

Cas particulier:

La fonction $f: x \mapsto e^{ax+b}$ où a est un réel fixé est définie et dérivable sur \mathbb{R} et $f'(x) = ae^{ax+b}$ pour tout x réel.

Propriétés:

- Si a < 0, alors la fonction f définie ci-dessus est strictement décroissante sur \mathbb{R} ;
- si a > 0, alors la fonction f est strictement croissante sur \mathbb{R} .
- si a < 0, alors $\lim_{x \to +\infty} e^{ax} = 0$ et $\lim_{x \to -\infty} e^{ax} = +\infty$;
- si a > 0, alors $\lim_{x \to +\infty} e^{ax} = +\infty$ et $\lim_{x \to -\infty} e^{ax} = 0$.

