Variations de suites, cours, première, spécialité Mathématiques

1 Sens de variation

Définition:

Exemple [Détermination du sens de variation d'une suite définie explicitement] :

On considère la suite définie pour tout entier naturel n non nul par $u_n = n^2 - 2n - 6$. Pour tout entier naturel n non nul, on a

Propriété:

Soit (u_n) une suite définie à partir d'un rang $p \in \mathbb{N}$. Si f est une fonction définie sur $[p; +\infty[$ telle que pour tout entier naturel $n, u_n = f(n)$, alors

- si f est décroissante sur $[p; +\infty[$, la suite (u_n) est à partir du rang p;
- si f est croissante sur $[p; +\infty[$, la suite (u_n) est à partir du rang p.

Preuve (cas où f est décroissante par exemple) :

Pour tout entier naturel $n \ge p$ $u_{n+1} - u_n = \dots$. Or $p \le n < n+1$ et f est décroissante sur $[p; +\infty[$ donc u_{n+1}, \dots, u_n c'est à dire $u_{n+1} - u_n, \dots, u_n$.

Exemple [Détermination du sens de variation d'une suite définie explicitement] :

Soit (u_n) la suite définie par $u_n = \frac{1}{n}$ pour tout entier naturel non nul n. Alors $u_n = f(n)$ avec $f(x) = \frac{1}{x}$.

On sait que f est sur $]0;+\infty[$ donc (u_n) est

Propriété:

Soit (u_n) une suite définie à partir d'un certain rang $p \in \mathbb{N}$. Si pour tout entier naturel n > p, u_n est strictement positif, alors :

- entier naturel $n \geq p$, u_n est strictement positif, alors:

 si pour tout entier naturel $n \geq p$, $\frac{u_{n+1}}{u_n} \geq \dots$, alors la suite (u_n) est à partir du rang p;
 - est à partir du rang p;
 si pour tout entier naturel $n \geq p$, $\frac{u_{n+1}}{u_n} \leq \dots$, alors la suite (u_n) est à partir du rang p.

Preuve:

Découle immédiatement de l'équivalence $\frac{u_{n+1}}{u_n} \ge \dots$ si et seulement si $u_{n+1} \dots u_n$ c'est à dire $u_{n+1} - u_n \ge \dots$

Exemple [Détermination du sens de variation d'une suite] :

Algorithmique:

Algorithme qui donne, dans le cas d'une suite (u_n) définie par une relation de récurrence $u_{n+1} = f(u_n)$, de premier terme u_p et croissante et non majorée, le plus petit rang n tel que la suite soit au-dessus d'un nombre M donné.

```
\begin{array}{l} \textbf{Donn\'ees}: p, \, u_p, \, M \\ \textbf{D\'ebut traitement} \\ & u \leftarrow ......; \\ & \textbf{tant que} \,\, u < M \,\, \textbf{faire} \\ & | u \leftarrow .....; \\ & | p \leftarrow ..... \\ & \textbf{fin} \\ & | \textbf{Sorties}: p \\ \textbf{Fin} \end{array}
```

Exemple de programmation en langage python:

Soit (u_n) définie par $u_{n+1} = 3u_n + 2$ pour tout entier naturel n non nul et par $u_1 = 2$. p désigne le premier rang de la suite (1 ici). M est choisi par l'utilisateur.

```
\begin{array}{ll} \text{def} & \text{seuil} \left( p \,, u \,, \! M \right) \colon \\ & u = \dots \\ & \text{while} \left( u \!\! < \!\! M \right) \colon \\ & u = \dots \dots \\ & p = \dots \dots \\ & \text{return} & \dots \end{array}
```


2 Application à l'Étude de suites particulières

2.1 Suites arithmétiques

Propriété, reconnaissance :

Une suite $(u_n)_n$ est arithmétique si et seulement si pour tout entier n,

Cette constante est alors la de la suite.

Propriété, sens de variation :

Soit (u_n) une suite arithmétique de raison r.

- Si pour tout entier n, $u_{n+1} u_n > 0$ c'est à dire r > 0 alors $(u_n)_n$ est;
- si pour tout entier n, $u_{n+1} u_n < 0$ c'est à dire r < 0 alors $(u_n)_n$ est;
- si r = 0 alors (u_n) est

2.2 Suites géométriques

Propriété (reconnaissance) :

Propriété (sens de variation) :

Soit (u_n) une suite géométrique de raison q > 0 et de premier terme $u_p > 0$ où p est un entier naturel.

- Si alors la suite (u_n) est;
- si, alors la suite (u_n) est;
- si, alors la suite (u_n) est

Promyo .

On a pour tout entier naturel n, $u_{n+1} - u_n = ...$ u_p et q étant positifs, $u_{n+1} - u_n$ est donc du signe de d'où le résultat.

