Proportions, cours, première STMG

F.Gaudon

29 septembre 2014

Table des matières

1	Notion de proportion	2
2	Addition de proportions	3
3	Proportions échelonnées	5

1 Notion de proportion

Définition :

- Un ensemble fini E est appelé une population.
- ullet Le nombre d'éléments n_E d'une population E est appelé son cardinal ou effectif.
- Une sous population A est une partie de la population E.
- La proportion p_A (fréquence) d'une sous population A de n_A éléments dans une population E de n_E éléments est le nombre

$$p_A = \frac{n_A}{n_E}$$

Exemple:

La population constituée par l'ensemble des élèves d'une classe contient des sous populations : l'ensemble des élèves ayant choisi LV1 anglais, l'ensemble des élèves ayant choisi LV2 anglais, LV1 Allemand, etc.

$\mathbf{Exemple}:$

On considère la population E des 3250 montres fabriquées en une journée par une entreprise. On a $n_E=3250$. La sous population A des 625 montres pour enfants a $n_A=625$ éléments. La proportion de montres pour enfants par rapport à l'ensemble des montres fabriquées est $p_A=\frac{n_A}{n_E}=\frac{625}{3250}\approx 0,19$ soit 19 % environ.

Remarques:

- Une proportion est un nombre toujours compris entre 0 et 1.
- Les proportions s'expriment sous la forme d'une fraction ou d'un nombre décimal ou bien encore d'un pourcentage.
- Avec la formule $p_A = \frac{n_A}{n_E}$ on obtient

$$n_A = p_A \times n_E$$

et

$$n_E = \frac{n_A}{p_A}$$

Exemple:

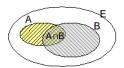
On considère la population des objets produits en une journée par une entreprise. 20 objets étaient défectueux et ils constituaient 2,5 % de l'ensemble des objets produits dans la journée.

On a donc $p_A = 0,025, n_A = 20$ et on cherche n_E . D'où $n_E = \frac{20}{0,025} \approx 800$.

2 Addition de proportions

Définition:

Soient A et B deux sous populations d'une population E.


- L'intersection de A et B notée $A \cap B$ est l'ensemble des éléments de E à la fois dans A et dans B.
- La réunion de A et B notée $A \cup B$ est l'ensemble des éléments de E qui se trouvent dans A ou dans B.
- A et B sont dites *disjointes* si leur intersection est vide c'est à dire qu'aucun individu n'est à la fois dans A et dans B.

Exemple:

Soit A la population des élèves de 2nde et B la population des élèves de première. Alors les deux populations sont disjointes, il n'y a aucun élèves à la fois en 2nde et en première. L'intersection est vide.

Propriété:

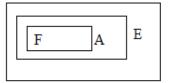
Si A et B sont deux parties disjointes (c'est à dire n'ayant aucun élément commun) d'une même population E et contenant des proportions p_A et p_B éléments respectivement, alors la proportion d'éléments dans A ou B par rapport à E est $p_A + p_B$.

Propriété:

Si A et B sont deux parties non disjointes d'une même population E de proportions p_A et p_B respectivement et si on note $p_{A\cap B}$ la proportion de $A\cap B$ et $p_{A\cup B}$ celle de $A\cup B$, alors

$$p_{A \cup B} = p_A + p_B - p_{A \cap B}$$

Exemple:


61,3 % des élèves d'une classe font en première langue anglais et 15,2 % font Allemand en première langue. Alors $\frac{61,3+15,2}{100}$ soit 76,5 % des élèves font anglais ou allemand en première langue, les LV1 Allemands et LV1 anglais forment ici des populations disjointes.

Par contre, il n'y a pas de sens à additionner les 53,6 % qui font LV2 Italien et les 12 % qui font LV3 Allemand car certains élèves seraient compté deux fois.

Cependant, si l'on sait que la proportion d'élèves à la fois LV2 italien et LV3 Allemand vaut 5 %, alors on peut utiliser la deuxième formule et la proportion d'élèves faisant LV2 italien ou LV3 Allemand est donc 0,536+0,12-0,05=0,606 soit 60,6 %.

3 Proportions échelonnées

Propriété:

Soit A une partie d'une population E et F une partie de A. Alors la proportion p_F d'éléments de F qui sont dans E est le produit de la proportion p_F' d'éléments de A qui sont dans F et de la proportion p_A d'éléments de E qui sont dans A c'est à dire

$$p_F = p_F' \times p_A$$

Exemple:

Dans un lycée, 20% des élèves sont en 1°L et 40% des 1°L sont demi-pensionnaires. $\frac{20}{100} \frac{40}{100} = 0,08$ donc 8% des élèves sont en 1°L et demi-pensionnaires dans ce lycée.

