Second degré, cours, première STI2D

F.Gaudon

27 juin 2015

Table des matières

1	Fonction polynôme du second degré	2
2	Équations du second degré	3
3	Signe de $ax^2 + bx + c$	4
4	Interprétation graphique	5

1 Fonction polynôme du second degré

Définition:

On appelle fonction polynôme du second degré toute fonction f définie sur \mathbb{R} et qui s'écrit $f(x) = ax^2 + bx + c$ où a, b et c sont des réels fixés et $a \neq 0$.

Propriété:

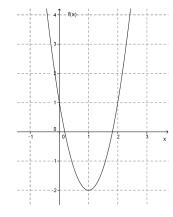
Dans un repère orthogonal $(O; \vec{i}; \vec{j})$ du plan, la représentation graphique de la fonction trinôme du second degré f est une parabole dont le point S de coordonnées $(\alpha; f(\alpha))$ est le sommet avec $\alpha = \frac{-b}{2a}$.

Exemple de savoir faire :

[Déterminer les coordonnées du sommet d'une parabole]

Soit la parabole représentant la fonction f définie par $f(x) = 3x^2 - 6x + 1$.

On a $\alpha = \frac{-b}{2a} = 1$ et f(1) = -2 donc le point S de coordonnées (1; -2) est le sommet de la parabole représentant la fonction f.



Propriété :

Pour toute fonction polynôme du second degré $f \mapsto ax^2 + bx + c$,

- si a > 0 la fonction f est strictement décroissante puis strictement croissante et admet un minimum en $x = \alpha = \frac{-b}{2a}$.
- si a < 0 la fonction f est strictement croissante puis strictement décroissante et admet un maximum en $x = \alpha = \frac{-b}{2a}$.

Synthèse:

Si a > 0,

x	-∞		α		$+\infty$
f(x)		¥	$f(\alpha)$	7	

et si a < 0,

-∞	α		$+\infty$
	$f(\alpha)$		
7		×	
-	<u>-∞</u> 		

Exemple de savoir faire:

[Déterminer les variations d'une fonction polynôme du second degré]

On reprend la fonction f de l'exemple précédent, $f(x) = 3x^2 - 6x + 1$. On a vu que $\alpha = \frac{-b}{2a} = 1$ et f(1) = -2. Par ailleurs, a = 3. a est positif donc on a le tableau de variations suivant :

x	-∞		1		$+\infty$
f(x)		¥	-2	7	

2 Équations du second degré

Définition:

- Toute solution de l'équation $ax^2 + bx + c = 0$ est appelée *racine* du trinôme f défini par $f(x) = ax^2 + bx + c$ pour tout x réel.
- On appelle discriminant du trinôme le réel Δ (prononcer « delta ») défini par $\Delta = b^2 4ac$.

Exemple de savoirFaire :

- [Vérifier si un nombre est une racine d'une équation du second degré] 2 est une racine de $2x^2 5x + 2$ car $2 \times 2^2 5 \times 2 + 2 = 2 \times 4 10 + 2 = 0$.
- [Calculer le discriminant d'une équation du second degré] Le discriminant du trinôme $2x^2 5x + 2$ est $\Delta = 5^2 4 \times 2 \times 2 = 25 16 = 9$.

Remarque:

Il faut ordonner les termes du trinôme avant de calculer le discriminant.

Propriété:

Soit $\Delta = b^2 - 4ac$ le discriminant du trinôme du second degré $ax^2 + bx + c$.

- Si $\Delta < 0$, alors l'équation $ax^2 + bx + c = 0$ n'a pas de solution réelle et l'expression $ax^2 + bx + c$ n'admet pas de factorisation dans \mathbb{R} .
- Si $\Delta = 0$, alors l'équation $ax^2 + bx + c = 0$ a une unique solution réelle dite racine double $x_0 = -\frac{b}{2a}$ et pour tout réel x, $ax^2 + bx + c = a(x x_0)^2$.
- Si $\Delta > 0$, alors l'équation $ax^2 + bx + c = 0$ a deux solutions réelles distinctes $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b \sqrt{\Delta}}{2a}$ et pour tout réel x, $ax^2 + bx + c = a(x x_1)(x x_2)$.

Exemple de savoir faire :

[Résoudre une équation du second degré]

On considère l'équation $2x^2 - 5x + 2 = 0$.

On a vu que $\Delta=9=3^2$ est positif. Il y a donc deux solutions à cette équation :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{5+3}{2 \times 2} = 2$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{5-3}{2 \times 2} = \frac{1}{2}$.

3 Signe de $ax^2 + bx + c$

Propriété:

Avec les mêmes notations que précédemment,

- si $\Delta < 0$, f(x) est du signe de a sur \mathbb{R} et ne s'annule pas ;
- si $\Delta = 0$, f(x) est du signe de a sur \mathbb{R} et s'annule en x_0 uniquement;
- si $\Delta > 0$, f(x) est du signe de a à l'extérieur des racines x_1 et x_2 et du signe opposé à l'intérieur.

Exemple de savoir faire :

[Dresser le tableau de signe d'un trinôme du second degré]

Résolution de $-x^2 + 6 + 7 > 0$.

• Résolution de $-x^2 + 6x + 7 = 0$:

On a
$$\Delta = 36 - 4 \times (-1) \times 7 = 64$$
.

 $\Delta > 0$ donc l'équation admet deux solutions distinctes $x_1 = \frac{-6+8}{-2} = -1$ et $x_2 = \frac{-6-8}{-2} = 7$.

• Étude de signe : a < 0 donc la parabole est tournée vers le bas :

x	$-\infty$		-1		7		$+\infty$
$-x^2 + 6x + 7$		-	0	+	0	-	

Donc S = [-1; 7]

4 Interprétation graphique

Propriété:

Les solutions de l'équation $ax^2 + bx + c = 0$ sont les abscisses des points d'intersection s'ils existent de la parabole représentant la fonction f et de l'axe des abscisses.

Interprétation:

- Si $\Delta > 0$, la courbe coupe l'axe des abscisses en deux points distincts;
- si $\Delta = 0$, la courbe a pour unique point commun avec l'axe des abscisses son sommet;
- si $\Delta < 0$, la courbe ne coupe pas l'axe des abscisses.

En outre, si a > 0, la parabole a ses branches tournées vers le haut et tournées vers le bas si a < 0.

