Fonctions de référence et fonctions associées, cours, première STI2D

F.Gaudon

28 juin 2015

Table des matières

		ctions de référence	2
	1.1	Fonction carré	2
	1.2	Fonction inverse	2
	1.3	Fonctions affines	3
	1.4	Fonction racine carrée	3
	1.5	Fonction valeur absolue	4
2	Fon	ctions associées	5

Fonctions de référence 1

Fonction carré 1.1

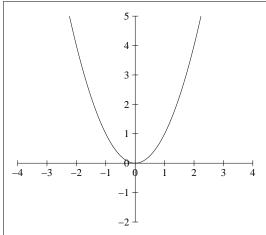
- $\mathcal{D}_f = \mathbb{R}$;
- définie pour tout x réel par $x \longmapsto x^2$;
- strictement décroissante sur $]-\infty;0]$ et strictement croissante sur $[0;+\infty[$;
- positive sur $]-\infty;+\infty[$;
- représentée graphiquement par une parabole.

Variations:

x	$-\infty$		0	
f(x)		\searrow		7
			0	

Signe:

x	$-\infty$		0		$+\infty$
f(x)		+	0	+	



Fonction inverse 1.2

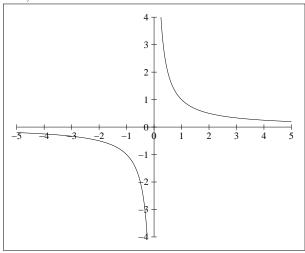
- $\mathcal{D}_f = \mathbb{R} \{0\}$;
- définie pour tout x ≠ 0 par x → ½;
 strictement décroissante sur] ∞; 0[et strictement décroissante sur]0; +∞[;
- strictement négative sur] $-\infty$; 0[et strictement positive sur]0; $+\infty$ [;
- représentée graphiquement par une hyperbole;

Variations:

x	$-\infty$		0		$+\infty$
f(x)		¥		¥	

Signe:

\overline{x}	$-\infty$		0		$+\infty$
f(x)		-		-	



1.3 Fonctions affines

- $\mathcal{D}_f = \mathbb{R}$;
- définie pour tout x réel par $x \longmapsto ax + b$ où a et b sont deux réels fixés;
- Variations :

a > 0:		
x	$-\infty$	$+\infty$
f(x)	/	X

a < 0:		
\boldsymbol{x}	$-\infty$	$+\infty$
f(x)		7

• Signe:

a > 0:					
x	$-\infty$		$-\frac{b}{a}$		$+\infty$
signe					
de		-	0	+	
ax + b					

a < 0:					
x	$-\infty$		$-\frac{b}{a}$		$+\infty$
signe					
de		+	0	-	
ax + b					

• Représentée graphiquement par une droite non parallèle à l'axe des ordonnées.

1.4 Fonction racine carrée

Définition:

On appelle fonction racine carrée la fonction définie sur \mathbb{R}^+ par $x \mapsto \sqrt{x}$.

Variations:

x	0		$+\infty$
\sqrt{x}	0	7	

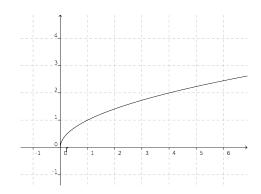
Signe:

\boldsymbol{x}	0		$+\infty$
\sqrt{x}	0	+	

Preuve des variations:

Soient x_1 et x_2 deux réels positifs tels que $x_1 < x_2$. Alors $x_2 - x_1 > 0$. Or, $\sqrt{x_2} - \sqrt{x_1} = \frac{(\sqrt{x_2} - \sqrt{x_1})(\sqrt{x_2} + \sqrt{x_1})}{\sqrt{x_2} + \sqrt{x_1}} = \frac{x_2 - x_1}{\sqrt{x_2} + \sqrt{x_1}}$. Comme $\sqrt{x_2} + \sqrt{x_1} > 0$ et $x_2 - x_1 > 0$ on a donc $\sqrt{x_2} - \sqrt{x_1} > 0$ c'est à dire $x_2 > x_1$ ce qui signifie que la fonction racine carrée est une fonction strictement croissante sur $[0; +\infty[$.

Représentation graphique :



1.5 Fonction valeur absolue

Définition:

On appelle fonction Valeur absolue la fonction définie sur $\mathbb R$ par

$$x \mapsto |x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

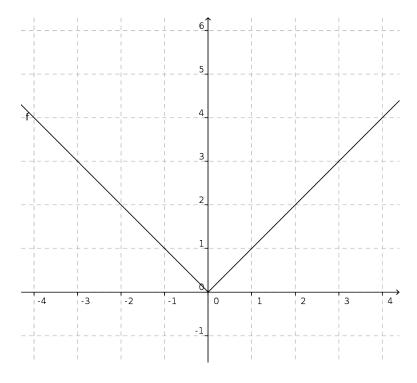
Variations:

x	$-\infty$	0	$+\infty$
x		\ 0	7

Signe:

x	$-\infty$		0		$+\infty$
x		+	0	+	

Représentation graphique :



Remarque:

La fonction valeur absolue est une fonction paire : sa courbe est symétrique par rapport à l'axe des ordonnées dans tout repère orthogonal du plan.

2 Fonctions associées

Propriété:

Soit u une fonction définie sur un intervalle I=[a;b]. Soient k et λ deux réels.

- La fonction u+k définie pour tout réel x de I par (u+k)(x) = u(x)+k a les mêmes variations que la fonction u sur I;
- si $\lambda > 0$, la fonction λu définie pour tout réel x de I par $(\lambda u)(x) = \lambda u(x)$ a les mêmes variations que u sur I;
- si $\lambda < 0$, la fonction λu a des variations contraires à celles de u sur I.
- La fonction $x \mapsto u(x + \lambda)$ est définie sur $[a \lambda; b \lambda]$ et a les mêmes variations que la fonction u.

Preuve:

On ne traitera que le cas où u est monotone strictement décroissante sur I, les autres cas se traitant de la même manière.

- Soient x_1 et x_2 deux réels de I tels que $x_1 < x_2$. u étant strictement décroissante sur I, on en déduit que $u(x_1) > u(x_2)$. $u(x_1) + k > u(x_2) + k$ ce qui montre que u + k est aussi décroissante sur I;
- Soient x_1 et x_2 deux réels de I tels que $x_1 < x_2$. u étant strictement décroissante sur I, on en déduit que $u(x_1) > u(x_2)$. $\lambda > 0$ donc $\lambda u(x_1) > \lambda u(x_2)$ donc λu est strictement décroissante aussi sur I;
- Soient x_1 et x_2 deux réels de I tels que $x_1 < x_2$. u étant strictement décroissante sur I, on en déduit que $u(x_1) > u(x_2)$. $\lambda < 0$ donc $\lambda u(x_1) < \lambda u(x_2)$ donc λu est strictement croissante sur I ce qui montre la propriété dans ce cas.
- Soient x_1 et x_2 deux réels de $[a-\lambda;b-\lambda]$ avec $x_1 < x_2$. Alors $x_1+\lambda$ et $x_2+\lambda$ appartiennent à [a;b] et $x_1+\lambda < x_2+\lambda$ D'où par stricte décroissance de la fonction u sur cet intervalle $u(x_1+\lambda) > u(x_2+\lambda)$ ce qui montre que la fonction définie par $x \mapsto u(x+\lambda)$ est strictement décroissante sur l'intervalle I.

Exemple de savoir faire :

[Déterminer les variations d'une fonction associée à une fonction de référence]

Soit f la fonction définie sur $I = [0; +\infty[$ par $f(x) = -3\sqrt{x} - 2.$

La fonction $x \mapsto -3\sqrt{x}$ a des variations contraires à celles de la fonction racine carrée sur I donc elle est strictement décroissante sur cet intervalle.

En outre, la fonction $x \mapsto -3\sqrt{x} - 2$ a les mêmes variations que $x \mapsto -3\sqrt{x}$ sur I donc f est strictement décroissante sur I.

Propriété:

Soit u une fonction définie sur un intervalle I.

- Si u(x) > 0, alors |u(x)| = u(x);
- si u(x) < 0, alors |u(x)| = -u(x).

Propriété:

Soit $(O; \vec{i}; \vec{j})$ un repère du plan et C_u la représentation graphique d'une fonction u définie sur un intervalle I dans ce repère.

- Soit k un réel. La courbe représentative C_{u+k} de la fonction u+k sur I est l'image de C_u par la translation de vecteur $k\vec{j}$.
- Soit λ un réel. La courbe représentative $C_{u(x+\lambda)}$ de la fonction définie par $x \mapsto u(x+\lambda)$ est l'image de C_u par la translation de vecteur $-\lambda \vec{i}$.
- La courbe représentative C_{-u} de la fonction -u sur I est l'image de C_u par la symétrie d'axe (Ox).
- La courbe représentative $C_{|u|}$ de la fonction |u| est confondue avec celle de u sur tous les intervalles où u est positive et est symétrique à celle de u sur tous les intervalles où u est négative.

Exemple de savoir faire:

• [Reconnaître l'expression de la fonction associée à partir d'une courbe donnée] Sur la représentation graphique ci-contre, la fonction

u est la fonction carré définie par $u(x) = x^2$. La fonction f a sa courbe obtenue par la translation de vecteur $3\vec{j}$ de la courbe de la fonction u. Son expression algébrique est donc $u(x) = x^2 + 3$.

[Tracer la courbe de la fonction dont associée à une fonction de référence dont l'expression est donnée] Soit u la fonction définie par u(x) = x² et g la fonction définie par g(x) = (x+3)² pour tout réel x. On a g(x) = u(x+2) donc la courbe de la fonction g est obtenue par la translation de vecteur -2i à partir de la courbe de la fonction carré.

