Suites numériques particulières, cours, première S

F.Gaudon

20 avril 2011

Table des matières

1	Suites arithmétiques	2
2	Suites géométriques	2

1 Suites arithmétiques

Définition:

Soit r un nombre réel. On appelle suite arithmétique de raison r toute suite définie par son premier terme et pour tout entier naturel n par la relation :

$$u_{n+1} = u_n + r$$

Exemple:

Soit (u_n) la suite définie par $u_0 = 56$ et $u_{n+1} = u_n - 4$. (u_n) est une suite arithmétique de raison -4. On a $u_1 = u_0 - 4 = 56 - 4 = 52$, $u_2 = 52 - 4 = 48$, $u_3 = 48 - 4 = 44$.

Propriété (expression en fonction de n):

Si $(u_n)_n$ est une suite arithmétique de raison r, alors :

- si le premier terme est u_0 , alors pour tout entier n, $u_n = u_0 + nr$;
- si le premier terme est u_1 , alors pour tout entier n, $u_n = u_1 + (n-1)r$. De manière plus générale, pour tous les entiers naturels n et p avec p < n on a :

$$u_n = u_p + (n-p)r$$

Exemple:

Soit (u_n) la suite arithmétique de raison -4 et de premier terme $u_0 = 56$. On a par exemple, $u_{12} = u_0 + 12r = 56 + 12 \times (-4) = 8$ ou encore $u_{15} = u_12 + 3r = 8 + 3 \times (-4) = 8 - 12 = -4$.

2 Suites géométriques

Définition:

Soit q un réel. On appelle suite $g\acute{e}om\acute{e}trique$ de raison q toute suite définie par son premier terme u_0 (ou u_1) et telle que pour tout entier naturel $n \geq 0$ (ou $n \geq 1$):

$$u_{n+1} = qu_n$$

Exemple:

Soit (u_n) la suite définie par $u_1 = 3$ et $u_{n+1} = 2u_n$ pour tout entier naturel n supérieur ou égal à 1. (u_n) est une suite géométrique de raison 2. On a $u_2 = 3 \times 2 = 6$, $u_3 = 6 \times 2 = 12$, $u_4 = 12 \times 2 = 24$, etc.

Propriété (expression en fonction de n):

Si $(u_n)_n$ est une suite géométrique de raison q et de premier :

- u_0 , alors $u_n = q^n u_0$;
- u_1 , alors $u_n = q^{n-1}u_1$.

De manière plus générale, si p et n sont des entiers naturels tels que p < n, on a :

$$u_n = u_p \times q^{n-p}$$

Exemple:

Soit (u_n) la suite géométrique de premier terme $u_0 = 5$ et de raison q = 2. On a par exemple $u_{12} = u_0 \times q^{12} = 5 \times 2^{12} = 5 \times 4096 = 20480$.

