Généralités sur les fonctions, cours, première S

1 Fonctions de référence

1.1 Fonction carré

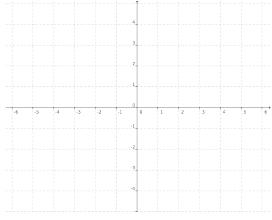
- $\mathcal{D}_f = \dots$;
- définie pour tout x réel par $x \longmapsto x^2$;
- strictement sur] $-\infty$; 0] et strictement sur [0; $+\infty$ [;
- sur $]-\infty;+\infty[$;

Variations:

x	$-\infty$	0	
f(x)			

Signe:

ĺ	œ	~		1.00
	\boldsymbol{x}	$-\infty$	••••	$+\infty$
	f(x)			



1.2 Fonction inverse

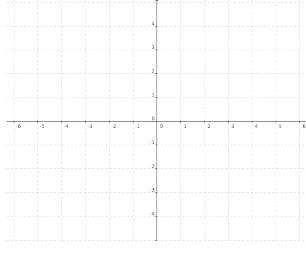
- $\mathcal{D}_f = \dots;$
- définie pour tout $x \neq 0$ par $x \longmapsto \frac{1}{x}$;
- strictement sur et strictement sur;
- strictement sur et strictement sur;
- représentée graphiquement par une;

Variations:

x	$-\infty$	••••	$+\infty$
f(x)			

Signe:

x	$-\infty$	••••	$+\infty$
f(x)			



1.3 Fonctions affines

- $\mathcal{D}_f = \dots$;
- définie pour tout x réel par $x \longmapsto ax + b$ où a et b sont deux réels fixés ;
- Variations :

x	$-\infty$	$+\infty$
f(x)		

x	$-\infty$	$+\infty$
f(x)		

• Signe:

<u>:</u>		
x	$-\infty$	 $+\infty$
signe		
de		
ax + b		

<u></u> :			
x	$-\infty$		$+\infty$
signe			
de		 	
ax + b			

• Représentée graphiquement par une droite non parallèle à l'axe des ordonnées.

1.4 Fonction racine carrée

Définition:

On appelle fonction *racine carrée* la fonction définie sur par $x \mapsto \sqrt{x}$.

Variations:

x	0	$+\infty$
\sqrt{x}		
V	0	

Signe:

x		$+\infty$
\sqrt{x}	••••	

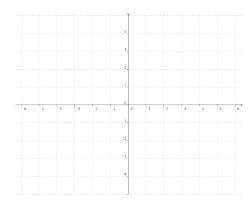
Preuve des variations:

Soient x_1 et x_2 deux réels positifs tels que $x_1 < x_2$. Alors $x_2 - x_1$

Or,
$$\sqrt{x_2} - \sqrt{x_1} = \dots$$

Comme $\sqrt{x_2} + \sqrt{x_1}$ et $x_2 - x_1$ on a donc $\sqrt{x_2} - \sqrt{x_1}$ c'est à dire $\sqrt{x_2}$... $\sqrt{x_1}$ ce qui signifie que la fonction racine carrée est une fonction strictement croissante sur $[0; +\infty[$.

Représentation graphique :



1.5 Fonction valeur absolue

Définition:

On appelle fonction $Valeur\ absolue$ la fonction définie sur $\mathbb R$ par

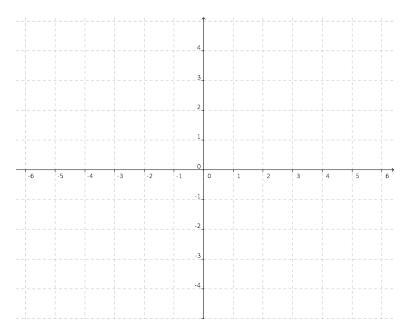
$$x \mapsto |x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Variations:

\boldsymbol{x}	$-\infty$	 $+\infty$
x		

Signe:

Représentation graphique:



Remarque:

La fonction valeur absolue est une fonction paire : sa courbe est symétrique par rapport à l'axe des ordonnées dans tout repère orthogonal du plan.

2 Fonctions associées

Propriété:

Soit u une fonction définie sur un intervalle I. Soient k et λ deux réels.

- si $\lambda > 0$, la fonction λu définie pour tout réel x de I par $(\lambda u)(x) = \lambda u(x)$ a des variations à celles de u sur I;

Preuve:

On ne traitera que le cas où u est strictement décroissante sur I, les autres cas se traitant de la même manière. Soient x_1 et x_2 deux réels de I tels que $x_1 < x_2$.

u étant strictement décroissante sur I, on en déduit que $u(x_1) > u(x_2)$.

- $u(x_1) + k > u(x_2) + k$ ce qui montre que u + k est aussi décroissante sur I;
- $\lambda > 0$ donc donc λu est strictement sur I;
- $\lambda < 0$ donc donc λu est strictement sur I ce qui montre la propriété dans ce cas.

Propriété:

Soit u une fonction définie sur un intervalle I.

- Si u est strictement positive, la fonction $\frac{1}{u}$ définie sur I par $(\frac{1}{u})(x) = \frac{1}{u(x)}$ a des variations à celles de u sur I.
- si u est positive sur I, la fonction \sqrt{u} définie sur I par $\sqrt{u}(x) = \sqrt{u(x)}$ a des variations à celles de u sur I.

Preuve:

On ne traite que le cas où u est strictement décroissante, les autres cas se traitant de même. Soient x_1 et x_2 deux réels de I tels que $x_1 < x_2$. u est strictement décroissante donc $u(x_1) > u(x_2)$

