Statistiques, cours, première S

1 Quantiles d'une série statistique

Définition:

• Le $premier quartile$ noté Q_1 de la série statistique est;	•
• Le $troisi\`eme$ $quartile$ noté Q_3 de la série est	

Détermination pratique :

On suppose la série ordonnée dans l'ordre croissant des valeurs du caractère. Soit N l'effectif total.

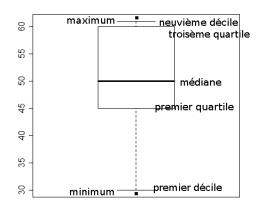
- Si $\frac{N}{4}$ est une entier alors Q_1 est la valeur de rang et Q_3 est la valeur de rang;
- si $\frac{N}{4}$ n'est pas entier, alors Q_1 est la valeur dont le rang suit et Q_3 la valeur dont le rang suit

Remarque:

Il existe d'autres définitions des quartiles. En particulier, on peut définir le premier quartile comme la médiane de la sous série formée des valeurs inférieures ou égales à la médiane et le troisième quartile comme la médiane de la sous série formée des valeurs supérieures ou égales à la médiane.

Définition:

Le n^e décile est la plus petite valeur telle que des effectifs au moins lui soient inférieurs ou égales.


Définition:

Un <i>diagramme</i> en boîte représente les caractéristiques statistiques sui-
vantes:
•;
•;
•;
•

Remarque:

On fait parfois figurer le minimum et le maximum de la série au lieu des premier et neuvième déciles.

2 Caractéristiques de dispersion

On considère une série statistique $(n_i; x_i)_{i=1}^p$ d'effectif total $N = \sum_{i=1}^p n_i$. **Définition**:

La variance de la série est le nombre noté V défini par :

Propriété:

....

Preuve:

V=.....

 $V = \dots$

V=.....

 $V = \dots$

V=.....

 $V = \dots$

V=.....

Propriété:

Pour tout réel x, on a :

$$\sum_{i=1}^{p} n_i (x_i - x)^2 \ge \sum_{i=1}^{p} n_i (x_i - \bar{x})^2$$

La variance minimise donc la distance des valeurs du caractère à la moyenne, c'est donc un indicateur approprié pour mesurer la dispersion des valeurs autour de la moyenne.

Preuve:

Soit f définie par $f(x) = \sum_{i=1}^{p} n_i (x_i - x)^2$ pour tout réel x. f est dérivable sur \mathbb{R} . On a $f'(x) = -\sum_{i=1}^{p} 2n_i (x_i - x) = -2 \sum_{i=1}^{p} n_i x_i + 2x \sum_{i=1}^{p} x_i = -2 \sum_{i=1}^{p} n_i x_i + 2Nx$. Donc $f'(x) \leq 0 \Leftrightarrow -\sum_{i=1}^{p} n_i x_i + aN \leq 0 \Leftrightarrow x \leq \frac{1}{N} \sum_{i=1}^{p} n_i x_i \Leftrightarrow x \leq \bar{x}$. Donc f est décroissante sur $]-\infty; \bar{x}]$ et croissante sur $[\bar{x}; +\infty[$ donc minimale pou $x=\bar{x}$.

Définition:

L'écart-type de la série statistique est le nombre noté σ défini par :

Définition:

On appelle intervalle inter quartile l'intervalle et écart inter quartile le nombre

3 Transformation affine de valeurs

Propriété:

Soient a et b deux réels et x_i pour i allant de 1 à p le valeurs non nécessairement distinctes d'une série statistique.

On note \bar{x} sa moyenne, s son écart type, V sa variance, M_e , Q_1 et Q_3 sa médiane et ses quartiles.

On définit alors une nouvelle série en posant $X_i = ax_i + b$.

La moyenne de la nouvelle série est alors, sa variance, son écart type et, si a > 0, son premier quartile est, sa médiane, son troisième quartile et son écart inter quartiles est

Preuve:

$$\overline{aX_i + b} = \dots$$

$$= \dots$$

$$= \dots$$

$$= \dots$$

$$= \dots$$

D'autre part,

$$\frac{\sum_{i=1}^{p} (X_i - \bar{X})^2}{N} = \dots$$

$$= \dots$$

$$= \dots$$

$$= \dots$$

$$= \dots$$

D'où l'écart type de la série des X_i est donnée par $\sqrt{a^2V}=|a|\sqrt{V}=|a|s$.

Les propriétés de la médiane et des quartiles découlent directement de la définition et de la conservation de l'ordre puisque a > 0.

4