Suites de nombres, cours, première ES

F.Gaudon

23 juin 2014

Table des matières

1	Notion de suite	2
2	Méthodes de construction des suites2.1 Définition explicite	
3	Variations et représentation graphique	3
4	Suites arithmétiques	4
5	Suites géométriques	6

1 Notion de suite

Définition:

On appelle *suite* toute fonction u qui à tout entier naturel n associe un nombre réel u(n) pour tout entier naturel. Il s'agit en fait d'une « liste numérotée » de réels.

Exemple:

Soit u la suite définie par $u(n) = 3^n$. On a $u(4) = 3^4 = 81$.

Définition:

- L'image de n par la *suite* u est notée u_n au lieu de u(n).
- u_n est appelé terme de rang n ou terme général de la suite.
- u_{n+1} est le terme suivant u_n et u_{n-1} est le terme précédent u_n .
- La suite u est souvent notée (u_n) .

Remarque:

- Si u_0 est le premier *terme* de la suite, u_n est le $n+1^e$ terme.
- Si u_1 est le premier terme de la suite, u_n est le n^e terme.

2 Méthodes de construction des suites

2.1 Définition explicite

Définition:

Soit f une fonction définie de $[0; +\infty[$ dans \mathbb{R} , on définit une suite (u_n) en posant pour tout $n \in \mathbb{N}$, $u_n = f(n)$ c'est à dire un procédé qui à tout rang n associe le terme u_n c'est à dire :

$$n \stackrel{f}{\longmapsto} u_n$$

Exemple:

Soit (u_n) définie pour tout entier naturel n par $u_n = 3n^2 + 2$.

On a
$$u_1 = 3 \times 1^2 + 2 = 5$$
.

$$u_2 = 3 \times 2^2 + 2 = 14$$

$$u_{10} = 3 \times 10^2 + 2 = 302.$$

2.2 Définition par récurrence

Définition:

Soit f une fonction définie de \mathbb{R} dans \mathbb{R} . Une suite définie par $r\acute{e}currence$ est une suite définie par son premier terme u_0 (ou u_1) et par un procédé indiquant comment calculer le terme suivant à partir du terme actuel c'est à dire par la relation vraie pour tout

$$n \in \mathbb{N}, \qquad u_{n+1} = f(u_n)$$

c'est à dire:

$$u_0 \stackrel{f}{\longmapsto} u_1 \stackrel{f}{\longmapsto} u_2 \stackrel{f}{\longmapsto} \dots \stackrel{f}{\longmapsto} u_n$$

Exemple:

$$u_n = \begin{cases} u_0 = 4 \\ u_{n+1} = 2u_n + 3 \end{cases}$$

On a $u_1 = 2u_0 + 3 = 2 \times 4 + 3 = 11$

puis $u_2 = 2u_1 + 3 = 2 \times 11 + 3 = 25$

et $u_3 = 2u_2 + 3 = 2 \times 25 + 3 = 53$.

3 Variations et représentation graphique

Définition : sens de variations :

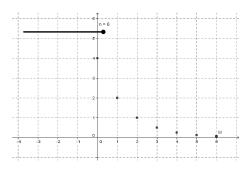
- Une suite $(u_n)_n$ est strictement croissante si pour tout entier naturel $n, u_{n+1} > u_n$.
- Une suite $(u_n)_n$ est strictement décroissante si pour tout entier naturel $n, u_{n+1} < u_n$.

${\bf D\'efinition: repr\'esentation\ graphique:}$

La représentation graphique d'une suite (u_n) dans un repère est l'ensemble des points de coordonnées $(n; u_n)$.

Exemple:

La figure ci-dessous montre la représentation graphique de la suite définie par $u_n = 4 \times \frac{1}{2^n}$ pour tout entier naturel n.



4 Suites arithmétiques

Définition:

Soit r un nombre réel. On appelle suite arithmétique de raison r toute suite définie par son premier terme u_0 (ou u_1) et pour tout entier naturel n par la relation :

$$u_{n+1} = u_n + r$$

D'où le schéma:

$$u_0 \stackrel{+r}{\longmapsto} u_1 \stackrel{+r}{\longmapsto} u_2 \stackrel{+r}{\longmapsto} \dots \stackrel{+r}{\longmapsto} u_n$$

Exemple:

La suite définie par $u_0 = 11$ et $u_{n+1} = u_n - 2$ pour tout entier naturel n est arithmétique.

On a:

$$u_1 = u_0 - 2 = 11 - 2 = 9,$$

$$u_2 = u_1 - 2 = 9 - 2 = 7$$
,

$$u_3 = u_2 - 2 = 7 - 2 = 5.$$

Propriété:

Une suite (u_n) est arithmétique si et seulement si pour tout entier n, la différence $u_{n+1}-u_n$ est constante. Cette constante est alors la raison de la suite.

Exemple:

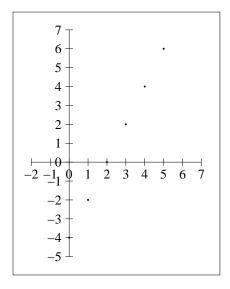
On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = -4 + 2n$. Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = (-4 + 2(n+1)) - (-4 + 2n) = -4 + 2n + 2 + 4 - 2n = 2$ Donc (u_n) est une suite arithmétique de raison 2.

Propriété:

Une suite (u_n) est arithmétique si et seulement si sa représentation graphique dans un repère du plan est constituée de points alignés. On parle alors d'évolution *linéaire*.

Exemple:

La figure ci-dessous montre la représentation graphique de la suite définie par $u_n = -4 + 2n$ pour tout entier naturel n.



Variations:

Soit (u_n) une suite arithmétique de raison r.

- Si r > 0 alors (u_n) est strictement croissante.
- Si r < 0, alors (u_n) est strictement décroissante.

Propriété (expression en fonction de n):

Si $(u_n)_n$ est une suite arithmétique de raison r, alors :

- si le premier terme est u_0 , alors pour tout entier n, $u_n = u_0 + nr$;
- si le premier terme est u_1 , alors pour tout entier n, $u_n = u_1 + (n-1)r$.

De manière plus générale, pour tous les entiers naturels n et p avec p < n on a :

$$u_n = u_p + (n - p)r$$

ce qui confirme que l'on a une évolution *linéaire*.

Exemple:

Soit la suite arithmétique (u_n) de raison 3 et de premier terme $u_1 = 5$. Alors pour tout $n \in \mathbb{N}, u_n = u_1 + (n-1)r = 5 + (n-1) \times 3 = 5 + 3n - 3 = 2 + 3n$.

5 Suites géométriques

Définition:

Soit b un réel. On appelle suite $g\acute{e}om\acute{e}trique$ de raison b toute suite définie par son premier terme u_0 (ou u_1) et telle que pour tout entier naturel $n \ge 0$ (ou $n \ge 1$):

$$u_{n+1} = bu_n$$

D'où le schéma :

$$u_0 \stackrel{\times b}{\longmapsto} u_1 \stackrel{\times b}{\longmapsto} u_2 \stackrel{\times b}{\longmapsto} \dots \stackrel{\times b}{\longmapsto} u_n$$

Exemple:

La suite (v_n) définie par $v_0 = 9$ et $v_{n+1} = v_n \times \frac{1}{3}$ pour tout entier naturel n, est géométrique de raison $\frac{1}{3}$.

On a:

$$v_1 = v_0 \times \frac{1}{3} = 9 \times \frac{1}{3} = 3.$$

$$v_2 = v_1 \times \frac{1}{3} = 3 \times \frac{1}{3} = 1.$$

Propriété:

Une suite (u_n) est géométrique si et seulement si pour tout entier n, le quotient $\frac{u_{n+1}}{u_n}$ est constant. Sa valeur est alors la raison b de la suite.

Exemple:

On considère la suite (v_n) définie pour tout entier naturel n par $v_n = 0, 5 \times 3^n$.

On a:

$$\frac{v_{n+1}}{v_n} = \frac{0.5 \times 3^{n+1}}{0.5 \times 3^n} = \frac{0.5 \times 3^n \times 3}{0.5 \times 3^n} = 3$$

Donc la suite est géométrique de raison 3.

Propriété:

Soit (u_n) une suite géométrique de raison b > 0. (u_n) est :

- strictement croissante si b > 1;
- strictement décroissante si 0 < b < 1.

Propriété (expression en fonction de n):

Si $(u_n)_n$ est une suite géométrique de raison q et de premier terme :

- u_0 , alors $u_n = q^n u_0$;
- u_1 , alors $u_n = q^{n-1}u_1$.

De manière plus générale, si p et n sont des entiers naturels tels que p < n, on a :

$$u_n = u_p \times q^{n-p}$$

On parle alors d'évolution exponentielle.

Exemple:

Soit (u_n) la suite géométrique de raison 0, 2 et de premier terme $u_0 = 10$.

Alors pour tout $n \in \mathbb{N}$, $u_n = u_0 \times q^n = 10 \times 0, 2^n$.

