Symétrie axiale cours 6e

F.Gaudon

24 février 2004

Table des matières

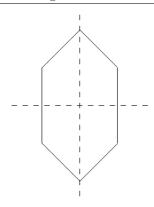
1	Axe	es de symétrie
	1.1	Approche expérimentale
	1.2	Axes de symétrie particuliers
		1.2.1 Médiatrice d'un segment
		1.2.2 Bissectrice d'un angle
2	Fig	ures symétriques
	2.1	Expérience
	2.2	Définition et propriétés
3	Fig	ures usuelles et symétrie axiale
	3.1	Triangles
	3.2	Quadrilatères

1 Axes de symétrie

1.1 Approche expérimentale

Définition:

Une droite (d) est un axe de symtrie d'une figure si les deux parties de la figure se superposent par pliage le long de la droite.

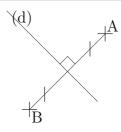


1.2 Axes de symétrie particuliers

1.2.1 Médiatrice d'un segment

Définition:

La médiatrice d'un segment est la droite perpendiculaire à ce segment et passant par son milieu.



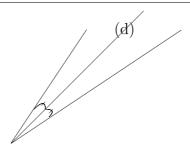
Propriétés:

- Si un point appartient à la médiatrice d'un segment, alors il est à égale distance des extrémités du segment;
- Si un point est à égale distance des extrémités d'un segment, alors il appartient à la médiatrice de ce segment.

1.2.2 Bissectrice d'un angle

Définition:

La bissectrice d'un angle est la droite qui partage cet angle en deux angles égaux.

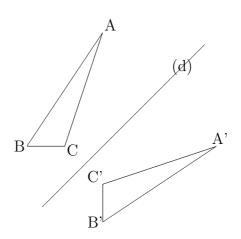


2 Figures symétriques

2.1 Expérience

Première définition:

Deux figures sont symétriques par rapport à une droite si en pliant suivant la droite, les figures se superposent.



Exemple:

Les triangles ABC et A'B'C' dont symétriques par rapport à la droite (d). Le point A' est le symétrique du point A.

2.2 Définition et propriétés

Définition:

Deux points A et A' sont symétriques par rapport à une droite (d) si la droite (d) est la médiatrice du segment [AA'].

Remarque:

Tout point de la droite (d) est son propre symétrique par rapport à la droite (d).

Propriétés:

Si deux figures sont symétriques alors:

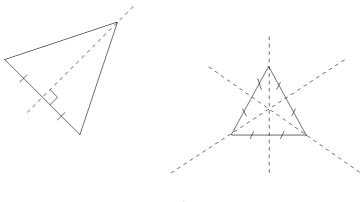
- les mesures de longueurs sont égales;
- les mesures d'angles sont égales;
- les mesures d'aires sont égales.

3 Figures usuelles et symétrie axiale

3.1 Triangles

Propriétés:

- Si un triangle est isocèle, alors la médiatrice de la base est un axe de symétrie du triangle;
- Si un triangle est équilatéral, alors les médiatrices des trois côtés sont les axes de symétrie du triangle.



Conséquences:

- Si un triangle est isocèle, alors ses angles à la base sont égaux;
- Si un triangle a deux angles égaux, alors c'est un triangle isocèle;
- Si un triangle est équilatéral, alors ses angles sont égaux;
- Si un triangle a ses trois angles égaux, alors c'est un triangle équilatéral.

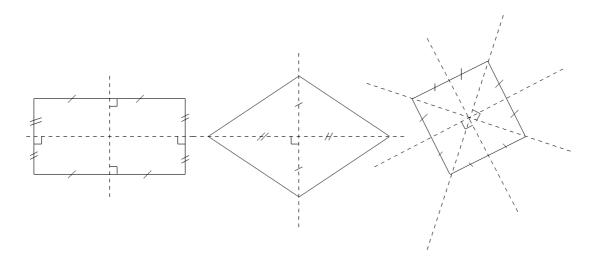
Preuve (hors programme):

- Le triangle est isocèle. La médiatrice de la base est un axe de symétrie. On en conclut que les angles à la base sont symétriques par rapport à la médiatrice de la base. Or, la symétrie axiale conserve les angles donc les angles à la bases sont égaux.
- Soit ABC un triangle tel que $\widehat{ABC} = \widehat{BAC}$. On considère la médiatrice (d) du segment [AB]. A et B sont symétriques par rapport à (d). Soit C' le symétrique de C par rapport à (d). La symétrie axiale conserve les mesures d'angles donc $\widehat{BAC} = \widehat{ABC'}$ d'où $\widehat{ABC'} = \widehat{ABC}$. De même, comme la symétrie axiale conserve les mesures d'angles, $\widehat{ABC} = \widehat{BAC'}$, d'où l'on déduit que $\widehat{BAC'} = \widehat{BAC}$. De $\widehat{BAC'} = \widehat{BAC}$ et $\widehat{ABC'} = \widehat{ABC}$ on déduit que \widehat{ABC} et $\widehat{ABC'}$ sont égaux (cas d'égalité des triangles implicite) et que C = C'. B est le symétrique de A par rapport à la droite (d) et C' celui de C; la symétrie axiale conserve les longueurs donc AC = BC' et comme C = C' on a donc AC = BC, le triangle est donc isocèle de sommet principal C.
- Se démontre de même que pour le cas d'un triangle isocèle.
- De même que dans le cas d'un triangle isocèle.

3.2 Quadrilatères

Propriétés:

- Un rectangle a ses côtés opposés égaux;
- Un rectangle a ses diagonales de même longueur et qui se coupent en leur milieu;
- Un losange a ses angles opposés égaux;
- Un losange a ses diagonales qui se coupent perpendiculairement en leur milieu;
- Un carré a ses diagonales de même longueur et qui se coupent perpendiculairement en leur milieu.



Preuve (hors programme):

Soit ABCD un rectangle. On considère la médiatrice (d) du côté [AB]. A et B sont donc symétriques par rapport à (d). La droite symétrique de (AB) est donc (AB) elle-même. La symétrie axiale conserve les angles donc la symétrique de la droite (AD) perpendiculaire à la droite (AB) en A est donc la droite perpendiculaire à (AB) en B, c'est la droite (BC). (DC) et (AB) sont perpendiculaires à (AD). Si deux droites sont perpendiculaires à une même troisième, alors elles sont parallèles entre elles donc (DC) et (AB) sont parallèles. (d) est perpendiculaire à (AB) et (DC) et (AB) sont parallèles. Si deux droites sont parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre donc (d) et (DC) sont perpendiculaires. (d) est perpendiculaire à (DC) donc (DC) est sa propre symétrique par rapport à (d). Le symétrique de D est

- l'intersection de la symétrique de (DC) et et de (AD), c'est donc l'intersection de (DC) et de (BC), c'est donc C. La symétrie axiale conserve les longueurs donc BC = AD. On montre de même en utilisant la médiatrice (d') de [AD] que AB = DC.
- Soit O le point d'intersection de (d) et (d'). Si un point appartient à la médiatrice d'un segment, alors il est à égale distance des extrémités de ce segment donc OA = OB et OA = OD. O est son propre symétrique par rapport à (d) et on a vu que C est le symétrique de D. La symétrie axiale conserve les longueurs donc OD = OC. D'où OA = OB = OC = OD. Le segment symétrique de [AC] est [BD] par rapport à (d) donc les diagonales ont même longueur.