Trigonométrie cours 3e

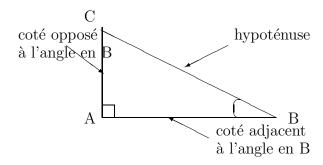
F.Gaudon

9 novembre 2004

Table des matières

1	Cos	inus, sinus et tangente d'un angle aigu	2			
	1.1	Cosinus (rappel)	2			
	1.2	Sinus	2			
	1.3	Tangente	2			
2	Application au calcul d'angles et de longueurs					
	2.1	Calcul du sinus, de la tangente ou du cosinus d'un angle dont				
		la mesure est connue	3			
	2.2	Calcul de la mesure d'un angle	3			
		2.2.1 Cas où l'on connaît la mesure de l'angle	3			
		2.2.2 Cas où l'on connaît deux longueurs dans un triangle				
		rectangle	3			
	2.3	Calcul de longueurs	4			
3	Relations trigonométriques					
4	Valeurs particulières du cosinus, du sinus et de la tangente					
5	Angles inscrits					

1 Cosinus, sinus et tangente d'un angle aigu



1.1 Cosinus (rappel)

Définition:

$$\cos(\widehat{ABC}) = \frac{\text{longueur du côté adjacent}}{\text{longueur de l'hypoténuse}}$$

1.2 Sinus

Définition:

On appelle sinus de l'angle aigu \widehat{ABC} , le nombre noté $\widehat{\sin ABC}$ défini par :

$$\sin(\widehat{ABC}) = \frac{\text{longueur du côté opposé}}{\text{longueur de l'hypoténuse}}$$

1.3 Tangente

Définition:

On appelle tangente de l'angle aigu \widehat{ABC} , le nombre noté tan \widehat{ABC} défini par :

$$\tan(\widehat{ABC}) = \frac{\text{longueur du côté opposé}}{\text{longueur du côté adjacent}}$$

Remarque:

Le sinus et le cosinus d'un angle aigu sont compris entre 0 et 1, ce n'est pas le cas de la tangente.

2 Application au calcul d'angles et de longueurs

La calculatrice doit être en mode DEGRÉS.

2.1 Calcul du sinus, de la tangente ou du cosinus d'un angle dont la mesure est connue

Exemple:

Calcul de $\sin(60^{\circ})$.

On tape 60 sin = ou sin 60 = suivant le modèle de calculatrice.

Il s'affiche 0,86602540.

Attention ce n'est qu'une valeur approchée de sin(60°).

Arrondie à 0,01 près on a : $\sin(60^\circ) \approx 0,87$.

2.2 Calcul de la mesure d'un angle

2.2.1 Cas où l'on connaît la mesure de l'angle

Exemple:

Calcul de l'angle x dont la tangente vaut 1, 3.

On tape 1,3 $tan^{-1} = ou tan^{-1}$ 1,3 = ou 1,3 inv tan = ou1,3 $\frac{1}{tan}$ =, etc. suivant les calculatrices.

Il s'affiche 52,43140797.

Attention, ce n'est qu'une valeur approchée.

Arrondie à 0,1 près on a : $x \approx 52,4^{\circ}$.

2.2.2 Cas où l'on connaît deux longueurs dans un triangle rectangle

Exemple:

Soit EFG un triangle rectangle en F avec EF=2,6 cm et EG=4 cm. Calcul de l'angle \widehat{EGF} .

Dans le triangle EFG rectangle en F, on connaît le côté opposé à l'angle et l'hypoténuse :

$$\sin \widehat{EGF} = \frac{AB}{CB}$$

$$= \frac{2,6}{4}$$

$$= 0,65$$

Donc l'angle \widehat{EGF} mesure 40.5° environ.

2.3 Calcul de longueurs

Exemple:

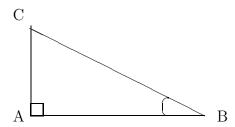
Soit ABD un triangle rectangle en B tel que AB=9 cm et $\widehat{BAD}=40^\circ.$ Calcul de la longueur BD.

Dans le triangle ABD rectangle en B, on connaît l'angle \widehat{BAD} et le côté adjacent, on cherche le côté opposé :

$$\tan \widehat{BAD} = \frac{BD}{BA}$$
$$\tan 40^{\circ} = \frac{BD}{9}$$

Donc $BD = \tan \widehat{40^{\circ}} \times 9$ c'est à dire $BD \approx 7,6$ cm.

3 Relations trigonométriques



Propriété:

Lorsque deux angles sont complémentaires, le sinus de l'un est égal au cosinus de l'autre. C'est à dire, pour tout angle aigu x,

$$\cos(x) = \sin(90 - x)$$
 et $\sin(x) = \cos(90 - x)$

Preuve:

$$\cos(\widehat{ABC}) = \frac{AB}{BC}$$

$$= \sin(\widehat{ACB})$$

$$= \sin(90 - \widehat{ABC})$$

Propriété:

Pour tout angle aigu x,

$$\cos^2(x) + \sin^2(x) = 1$$

où on note

$$(\cos(x))^2 = \cos^2 x$$

Preuve:

$$\cos^{2}(\widehat{ABC}) + \sin^{2}(\widehat{ABC}) = \left(\frac{AB}{BC}\right)^{2} + \left(\frac{AC}{BC}\right)^{2}$$
$$= \frac{AB^{2}}{AC^{2}} + \frac{AC^{2}}{BC^{2}}$$
$$= \frac{AB^{2} + AC^{2}}{BC^{2}}$$

D'après le théorème de Pythagore dans le triangle ABC rectangle en A : $BC^2 = AB^2 + AC^2$ Donc

$$\cos^{2}(\widehat{ABC}) + \sin^{2}(\widehat{ABC}) = \frac{BC^{2}}{BC^{2}}$$

$$= 1$$

Propriété:

Pour tout angle aigu
$$x$$
 tel que $cos(x) \neq 0$,

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

Preuve:

$$\tan(\widehat{ABC}) = \frac{AC}{AB}$$

$$\frac{\sin(\widehat{ABC})}{\cos(\widehat{ABC})} = \frac{\frac{AC}{BC}}{\frac{AB}{BC}}$$

$$= \frac{AC}{BC} \times \frac{BC}{AB}$$

$$= \frac{AC}{AB}$$

4 Valeurs particulières du cosinus, du sinus et de la tangente

angle	cosinus	sinus	tangente
0°	1	0	0
30°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$

5 Angles inscrits

Définition:

Sur un cercle \mathcal{C} de centre O, on considère trois points A, B et M. L'angle \widehat{AOB} est appelé angle au centre. On dit que l'angle \widehat{AMB} est inscrit dans le cercle si M se trouve du même côté que O par rapport à la droite (AB).

Propriété:

L'angle \widehat{AMB} a pour mesure la moitié de la mesure de l'angle \widehat{AOB} c'est à dire :

$$\widehat{AOB} = 2 \times \widehat{AMB}$$

Preuve:

admise