Variations de fonctions, cours, 2nde

1 Croissance, décroissance

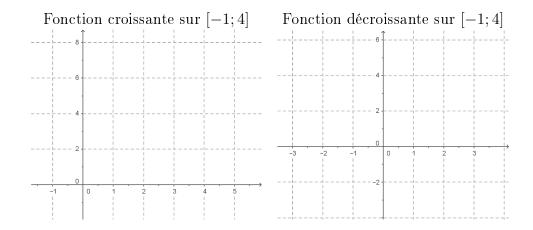
Propriétés:

Soient a, b, c trois nombres réels :

Définition:

Soit f une fonction définie sur un intervalle I.

- La fonction f est dite sur l'intervalle I lorsque pour tous x_1 et x_2 réels appartenant à I, si $x_1 \leq x_2$ alors, c'est à dire que f des inégalités.
- La fonction f est dite sur l'intervalle I lorsque pour tous x_1 et x_2 réels appartenant à I, si $x_1 \leq x_2$ alors, c'est à dire que f des inégalités.
- ullet La fonction f est dite sur l'intervalle I lors-qu'elle est, ou lorsqu'elle est

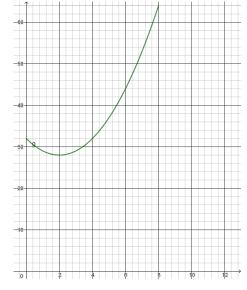


Synthèse:

Exemple [Dresser le tableau de variations d'une fonction par lecture graphique]:

On considère la fonction g définie sur l'intervalle [0;8] représentée ci-contre. La fonction semble, d'après la représentation graphique, admettre le tableau de variation suivant :

x	0		8
f(x)			



Exemple [Étudier les variations en utilisant des inégalités]:

Soit f la fonction définie par f(x) = -2x + 3.

Pour étudier ses variations l'intervalle \mathbb{R} , soient x_1 et x_2 deux réels tels que x_1, \ldots, x_2

On va étudier si appliquer la fonction à x_1 et x_2 change ou ne change pas le sens de l'inégalité.

D'après les règles sur les inégalités, -2 étant négatif on a donc $-2x_1$ $-2x_2$

Puis $-2x_1 + 3 \dots - 2x_2 + 3$

C'est à dire $f(x_1)....f(x_2)$.

La fonction f a donc changé le sens de l'inégalité, elle est donc sur $\mathbb R$.

2 Maximum, minimum

Définition:

Soit f une fonction définie sur un intervalle I. Soit x_0 un réel de l'intervalle I.

- La fonction f admet un $maximum\ M$ en x_0 sur l'intervalle I lorsque :
 - **▶**;
 - ightharpoonup pour tout nombre x de I
- La fonction f admet un minimum m en x_0 sur l'intervalle I lorsque :
 - **>**;
 - \blacktriangleright pour tout nombre x de I
- On dit que la fonction f admet un extremum sur I si elle admet

Exemple:

La fonction g précédente semble admettre :

- un minimum
- un maximum

3 Cas particulier : variations des fonctions affines

Définition:

```
Soient a et b deux nombres réels. On appelle fonction affine la fonction
f définie sur \mathbb{R} par :
```

- Si a > 0 alors la fonction f est sur $] \infty; +\infty[$;
- si a = 0 alors la fonction f est sur $] \infty; +\infty[$;
- si a < 0 alors la fonction f est sur $] \infty; +\infty[$.

x	$-\infty$	$+\infty$
f(x)		

x	$-\infty$	$+\infty$
f(x)		•••

Preuve:

- Si a > 0, il s'agit de montrer que si x augmente, alors f(x) c'est à dire que si $x_1 < x_2$ alors $f(x_1)$ $f(x_2)$. Soient donc x_1 et x_2 deux réels tels que x_1 x_2 . Alors $ax_1....ax_2$ et $ax_1 + b...ax_2 + b$ c'est à dire $f(x_1)$ $f(x_2)$ donc f est strictement sur $]-\infty;+\infty[$;
- si a < 0, il s'agit de montrer que si x augmente, alors f(x) c'est à dire que si $x_1 < x_2$ alors $f(x_1), \dots, f(x_2)$. Soient donc x_1 et x_2 deux réels tels que $x_1 < x_2$. Alors on a $ax_1....ax_2$ puis $ax_1 + b...ax_2 + b$ c'est à dire $f(x_1) > f(x_2)$ donc f est strictement sur $]-\infty; +\infty[$.

Exemple [Savoir reconnaître les variations d'une fonction affine dont l'écriture algébrique est donnée]:

On considère la fonction f définie par f(x) = 3 - 2x. $f(x) = \dots \text{ donc } a = \dots$ Comme a....., la fonction f est strictement sur $]-\infty;+\infty[$.

