Fonctions polynômes du second degré, cours, 2nde

Fonctions polynômes du second degré, cours, 2nde

F.Gaudon

http://mathsfg.net.free.fr

8 juin 2014

- Définition et forme canonique
- variations
- Représentation graphique
- Résolution d'équations produits

- Définition et forme canonique

Définition:

On appelle *fonction polynôme du second degré* toute fonction f définie sur \mathbb{R} et qui s'écrit f(x) =

Définition:

On appelle *fonction polynôme du second degré* toute fonction f définie sur \mathbb{R} et qui s'écrit $f(x) = ax^2 + bx + c$ où a, b et c sont des réels fixés et $a \neq 0$.

Toute fonction polynôme du second degré f définie par $f(x) = ax^2 + bx + c$ avec $a, b, c \in \mathbb{R}$ et $a \neq 0$ s'écrit aussi :

Toute fonction polynôme du second degré f définie par $f(x) = ax^2 + bx + c$ avec $a, b, c \in \mathbb{R}$ et $a \neq 0$ s'écrit aussi :

$$f(x) = a(x - \alpha)^2 + \beta$$

οù

$$\alpha =$$

Toute fonction polynôme du second degré f définie par $f(x) = ax^2 + bx + c$ avec $a, b, c \in \mathbb{R}$ et $a \neq 0$ s'écrit aussi :

$$f(x) = a(x - \alpha)^2 + \beta$$

οù

$$\alpha = \frac{-b}{2a}$$

(prononcer « alpha »)

$$\beta =$$

Toute fonction polynôme du second degré f définie par $f(x) = ax^2 + bx + c$ avec $a, b, c \in \mathbb{R}$ et $a \neq 0$ s'écrit aussi :

$$f(x) = a(x - \alpha)^2 + \beta$$

οù

$$\alpha = \frac{-b}{2a}$$

(prononcer « alpha »)

$$\beta = f(\alpha)$$

(prononcer « beta ») Cette écriture est appelée

Toute fonction polynôme du second degré f définie par $f(x) = ax^2 + bx + c$ avec $a, b, c \in \mathbb{R}$ et $a \neq 0$ s'écrit aussi :

$$f(x) = a(x - \alpha)^2 + \beta$$

οù

$$\alpha = \frac{-b}{2a}$$

(prononcer « alpha »)

$$\beta = f(\alpha)$$

(prononcer « beta »)

Cette écriture est appelée *forme canonique* de la fonction *f*

Soit f la fonction définie par $f(x) = 3x^2 - 6x + 1$.

• On a $\alpha =$

• On a
$$\alpha = \frac{-b}{2a} =$$

• On a
$$\alpha = \frac{-b}{2a} = \frac{-(-6)}{2 \times 3} =$$

• On a
$$\alpha = \frac{-b}{2a} = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$$

- On a $\alpha = \frac{-b}{2a} = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$
- En outre, $f(\alpha) =$

- On a $\alpha = \frac{-b}{2a} = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$
- En outre, $f(\alpha) = f(1) =$

- On a $\alpha = \frac{-b}{2a} = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$
- En outre, $f(\alpha) = f(1) = 3 \times 1^2 6 \times 1 + 1 =$

- On a $\alpha = \frac{-b}{2a} = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$
- En outre, $f(\alpha) = f(1) = 3 \times 1^2 6 \times 1 + 1 = 3 6 + 1 = -2$

- On a $\alpha = \frac{-b}{2a} = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$
- En outre, $f(\alpha) = f(1) = 3 \times 1^2 6 \times 1 + 1 = 3 6 + 1 = -2$
- On vérifie donc que $3(x-1)^2 2 =$

- On a $\alpha = \frac{-b}{2a} = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$
- En outre, $f(\alpha) = f(1) = 3 \times 1^2 6 \times 1 + 1 = 3 6 + 1 = -2$
- On vérifie donc que $3(x-1)^2 2 = 3(x^2 2x + 1) 2 =$

- On a $\alpha = \frac{-b}{2a} = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$
- En outre, $f(\alpha) = f(1) = 3 \times 1^2 6 \times 1 + 1 = 3 6 + 1 = -2$
- On vérifie donc que $3(x-1)^2 2 = 3(x^2 2x + 1) 2 = 3x^2 6x + 3 2 =$

- On a $\alpha = \frac{-b}{2a} = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$
- En outre, $f(\alpha) = f(1) = 3 \times 1^2 6 \times 1 + 1 = 3 6 + 1 = -2$
- On vérifie donc que $3(x-1)^2 2 = 3(x^2 2x + 1) 2 = 3x^2 6x + 3 2 = 3x^2 6x + 1 =$

- On a $\alpha = \frac{-b}{2a} = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$
- En outre, $f(\alpha) = f(1) = 3 \times 1^2 6 \times 1 + 1 = 3 6 + 1 = -2$
- On vérifie donc que $3(x-1)^2 2 = 3(x^2 2x + 1) 2 = 3x^2 6x + 3 2 = 3x^2 6x + 1 = f(x)$

Soit f la fonction définie par $f(x) = 3x^2 - 6x + 1$.

- On a $\alpha = \frac{-b}{2a} = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$
- En outre, $f(\alpha) = f(1) = 3 \times 1^2 6 \times 1 + 1 = 3 6 + 1 = -2$
- On vérifie donc que $3(x-1)^2 2 = 3(x^2 2x + 1) 2 = 3x^2 6x + 3 2 = 3x^2 6x + 1 = f(x)$

Donc $3(x-1)^2 - 2$ est bien la

Soit *f* la fonction définie par $f(x) = 3x^2 - 6x + 1$.

- On a $\alpha = \frac{-b}{2a} = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$
- En outre, $f(\alpha) = f(1) = 3 \times 1^2 6 \times 1 + 1 = 3 6 + 1 = -2$
- On vérifie donc que $3(x-1)^2 2 = 3(x^2 2x + 1) 2 = 3x^2 6x + 3 2 = 3x^2 6x + 1 = f(x)$

Donc $3(x-1)^2 - 2$ est bien la forme canonique de $f(x) = 3x^2 - 6x + 1$.

- variations

Pour toute fonction polynôme du second degré $f \mapsto ax^2 + bx + c$,

• si a > 0 la fonction f est strictement

Pour toute fonction polynôme du second degré $f \mapsto ax^2 + bx + c$,

 si a > 0 la fonction f est strictement décroissante puis strictement

Pour toute fonction polynôme du second degré $f \mapsto ax^2 + bx + c$,

 si a > 0 la fonction f est strictement décroissante puis strictement croissante et admet un minimum en x =

Pour toute fonction polynôme du second degré $f \mapsto ax^2 + bx + c$,

• si a > 0 la fonction f est strictement décroissante puis strictement croissante et admet un minimum en $x = \alpha = \frac{-b}{2a}$.

- si a > 0 la fonction f est strictement décroissante puis strictement croissante et admet un minimum en $x = \alpha = \frac{-b}{2a}$.
- si a < 0 la fonction f est strictement

- si a > 0 la fonction f est strictement décroissante puis strictement croissante et admet un minimum en $x = \alpha = \frac{-b}{2a}$.
- si a < 0 la fonction f est strictement croissante puis strictement

- si a > 0 la fonction f est strictement décroissante puis strictement croissante et admet un minimum en $x = \alpha = \frac{-b}{2a}$.
- si a < 0 la fonction f est strictement croissante puis strictement décroissante et admet un maximum en x =

- si a > 0 la fonction f est strictement décroissante puis strictement croissante et admet un minimum en $x = \alpha = \frac{-b}{2a}$.
- si a < 0 la fonction f est strictement croissante puis strictement décroissante et admet un maximum en $x = \alpha = \frac{-b}{2a}$.

Synthèse:

Si a > 0,

Synthèse:

Si a > 0,

X

Si a > 0,

 $X - \infty$ $\alpha + \infty$

Si a > 0,

X	-∞	α	$+\infty$

Synthèse : Si a > 0,

X	-∞		α		$+\infty$
f(x)		X		7	

Si a > 0,

X	-∞		α		$+\infty$
f(x)		\searrow	$f(\alpha)$	7	

Si a > 0,

X	-∞	α		$+\infty$
f(x)		$f(\alpha)$	<i>></i>	

et si a < 0,

Si a > 0,

X	-∞	α	$+\infty$
f(x)		$f(\alpha)$	7

et si
$$a < 0$$
,

Si a > 0,

X	-∞		α		$+\infty$
f(x)		\searrow	$f(\alpha)$	7	

et si a < 0,

X	-∞	α	$+\infty$

Si a > 0,

X	-∞		α		$+\infty$
f(x)		\searrow	f(lpha)	7	

et si a < 0,

X	-∞		α		$+\infty$
f(x)		7	$f(\alpha)$	\searrow	

Dans l'exemple précédent $f(x) = 3x^2 - 6x + 1$. On a vu que $\alpha =$

Dans l'exemple précédent $f(x) = 3x^2 - 6x + 1$. On a vu que $\alpha = \frac{-b}{2a} = 1$ et f(1) =

Dans l'exemple précédent $f(x) = 3x^2 - 6x + 1$. On a vu que $\alpha = \frac{-b}{2a} = 1$ et f(1) = -2. Par ailleurs, a = -2

Dans l'exemple précédent $f(x) = 3x^2 - 6x + 1$. On a vu que $\alpha = \frac{-b}{2a} = 1$ et f(1) = -2. Par ailleurs, a = 3. a est

Dans l'exemple précédent $f(x) = 3x^2 - 6x + 1$. On a vu que $\alpha = \frac{-b}{2a} = 1$ et f(1) = -2. Par ailleurs, a = 3. a est positif donc on a le tableau de variations suivant :

X

Dans l'exemple précédent $f(x) = 3x^2 - 6x + 1$. On a vu que $\alpha = \frac{-b}{2a} = 1$ et f(1) = -2. Par ailleurs, a = 3. a est positif donc on a le tableau de variations suivant :

Х	-∞	1	$+\infty$

Dans l'exemple précédent $f(x) = 3x^2 - 6x + 1$. On a vu que $\alpha = \frac{-b}{2a} = 1$ et f(1) = -2. Par ailleurs, a = 3. a est positif donc on a le tableau de variations suivant :

X	-∞		1		$+\infty$
			-2		
<i>f</i> (<i>x</i>)		\searrow		7	

Dans l'exemple précédent $f(x) = 3x^2 - 6x + 1$. On a vu que $\alpha = \frac{-b}{2a} = 1$ et f(1) = -2. Par ailleurs, a = 3. a est positif donc on a le tableau de variations suivant :

X	-∞		1		$+\infty$
f(x)		¥	-2	7	

- Définition et forme canonique
- 2 variations
- Représentation graphique
- Résolution d'équations produits

Propriété:

Dans un repère orthogonal $(O; \vec{i}; \vec{j})$ du plan, la représentation graphique de la fonction trinôme du second degré f est une *parabole* dont le point S de coordonnées

Propriété:

Dans un repère orthogonal $(O; \vec{i}; \vec{j})$ du plan, la représentation graphique de la fonction trinôme du second degré f est une *parabole* dont le point S de coordonnées $(\alpha; f(\alpha))$ est le *sommet*.

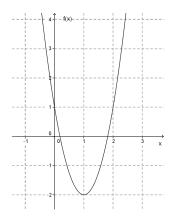
On a vu que pour $f(x) = 3x^2 - 6x + 1$, on a $\alpha =$

On a vu que pour
$$f(x) = 3x^2 - 6x + 1$$
, on a $\alpha = \frac{-b}{2a} = 1$ et $f(1) =$

On a vu que pour $f(x) = 3x^2 - 6x + 1$, on a $\alpha = \frac{-b}{2a} = 1$ et f(1) = -2 donc le point S de coordonnées

On a vu que pour $f(x) = 3x^2 - 6x + 1$, on a $\alpha = \frac{-b}{2a} = 1$ et f(1) = -2 donc le point S de coordonnées (1; -2) est le sommet de la parabole représentant la fonction f.

On a vu que pour $f(x) = 3x^2 - 6x + 1$, on a $\alpha = \frac{-b}{2a} = 1$ et f(1) = -2 donc le point S de coordonnées (1; -2) est le sommet de la parabole représentant la fonction f.



- Résolution d'équations produits

Propriété:

Un produit est nul si et seulement si l'un des facteurs est nul.

Exemple 1 de résolution d'équations du second degré : : (3x+2)(4x-3) = 0 dans \mathbb{R} .

$$(3x+2)(4x-3) = 0$$
 dans \mathbb{R} .

D'après la propriété, 3x + 2 = 0 ou 4x - 3 = 0.

$$(3x+2)(4x-3) = 0$$
 dans \mathbb{R} .

D'après la propriété, 3x + 2 = 0 ou 4x - 3 = 0.

C'est à dire 3x = -2 ou 4x = 3

$$(3x+2)(4x-3) = 0$$
 dans \mathbb{R} .

D'après la propriété, 3x + 2 = 0 ou 4x - 3 = 0.

C'est à dire
$$3x = -2$$
 ou $4x = 3$

donc
$$x = \frac{-2}{3}$$
 ou $x = \frac{3}{4}$.

$$(3x+2)(4x-3) = 0$$
 dans \mathbb{R} .

D'après la propriété, 3x + 2 = 0 ou 4x - 3 = 0.

C'est à dire 3x = -2 ou 4x = 3

donc
$$x = \frac{-2}{3}$$
 ou $x = \frac{3}{4}$.

L'équation (3x+2)(4x-3)=0 a donc deux solutions : $\frac{-2}{3}$ et $\frac{3}{4}$.

$$(3x+2)(2x+1) - x(3x+2) = 0$$
 dans \mathbb{R} .

(3x+2)(2x+1) - x(3x+2) = 0 dans \mathbb{R} .

L'équation n'est pas factorisée.

$$(3x+2)(2x+1) - x(3x+2) = 0$$
 dans \mathbb{R} .

L'équation n'est pas factorisée.

La développer ne permet pas de résoudre car on obtient $3x^2 + 5x + 2 = 0$ qu'on ne sait pas résoudre.

$$(3x+2)(2x+1) - x(3x+2) = 0$$
 dans \mathbb{R} .

L'équation n'est pas factorisée.

La développer ne permet pas de résoudre car on obtient $3x^2 + 5x + 2 = 0$ qu'on ne sait pas résoudre.

$$(3x+2)(2x+1) - x(3x+2) = 0$$
 dans \mathbb{R} .

L'équation n'est pas factorisée.

La développer ne permet pas de résoudre car on obtient $3x^2 + 5x + 2 = 0$ qu'on ne sait pas résoudre.

on obtient
$$(3x + 2)(2x + 1 - x) = 0$$

$$(3x+2)(2x+1) - x(3x+2) = 0$$
 dans \mathbb{R} .

L'équation n'est pas factorisée.

La développer ne permet pas de résoudre car on obtient $3x^2 + 5x + 2 = 0$ qu'on ne sait pas résoudre.

on obtient
$$(3x + 2)(2x + 1 - x) = 0$$

$$(3x+2)(2x+1) - x(3x+2) = 0$$
 dans \mathbb{R} .

L'équation n'est pas factorisée.

La développer ne permet pas de résoudre car on obtient $3x^2 + 5x + 2 = 0$ qu'on ne sait pas résoudre.

on obtient
$$(3x + 2)(2x + 1 - x) = 0$$

c'est à dire
$$(3x + 2)(x + 1) = 0$$

qui donne
$$3x + 2 = 0$$
 ou $x + 1 = 0$ donc $x = \frac{-2}{3}$ ou $x = -1$.

$$x^2 + 4x + 4 = 0$$
 dans \mathbb{R} .

$$x^2 + 4x + 4 = 0$$
 dans \mathbb{R} .

L'équation n'est pas factorisée.

$$x^2 + 4x + 4 = 0$$
 dans \mathbb{R} .

L'équation n'est pas factorisée.

Pas de facteur commun mais une identité remarquable :

$$x^2 + 4x + 4 = (x + 2)^2$$
.

$$x^2 + 4x + 4 = 0$$
 dans \mathbb{R} .

L'équation n'est pas factorisée.

Pas de facteur commun mais une identité remarquable :

$$x^2 + 4x + 4 = (x + 2)^2$$
.

On résout
$$(x+2)^2 = 0$$

$$x^2 + 4x + 4 = 0$$
 dans \mathbb{R} .

L'équation n'est pas factorisée.

Pas de facteur commun mais une identité remarquable :

$$x^2 + 4x + 4 = (x + 2)^2$$
.

On résout
$$(x+2)^2=0$$

qui donne
$$x + 2 = 0$$
 donc $x = -2$.