# Étude graphique des fonctions, classe de seconde

## F.Gaudon

## 6 juin 2010

## Table des matières

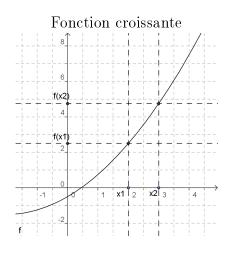
| 1 | Croissance, décroissance                                       | 2 |  |  |  |  |  |  |  |  |  |
|---|----------------------------------------------------------------|---|--|--|--|--|--|--|--|--|--|
| 2 | 2 Maximum, minimum                                             |   |  |  |  |  |  |  |  |  |  |
| 3 | 3 Résolutions graphiques d'inéquations et signe d'une fonction |   |  |  |  |  |  |  |  |  |  |
|   | 3.1 Compléments sur les intervalles                            | 3 |  |  |  |  |  |  |  |  |  |
|   | 3.2 Résolution graphique d'inéquations                         | 4 |  |  |  |  |  |  |  |  |  |
|   | 3.3 Signe d'une fonction                                       | 5 |  |  |  |  |  |  |  |  |  |

## 1 Croissance, décroissance

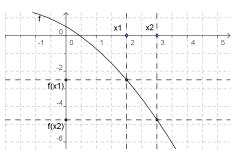
#### Définition:

Soit f une fonction définie sur un intervalle I.

- La fonction f est dite *croissante* sur l'intervalle I lorsque, si x augmente dans I, alors f(x) augmente.
- La fonction f est dite <u>décroissante</u> sur l'intervalle I lorsque, si x augmente dans I, alors f(x) diminue.
- La fonction f est dite monotone sur l'intervalle I lorsqu'elle est croissante sur I, ou lorsqu'elle est décroissante sur I.



### Fonction décroissante

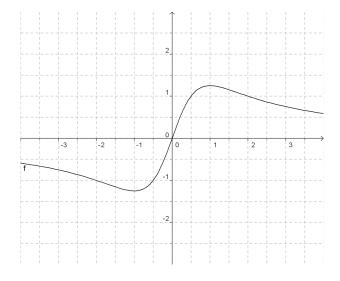


### Synthèse:

Pour résumer les variations d'une fonction f on utilise un tableau de variations dans lequel apparaissent les intervalles sur lesquels la fonction est monotone.

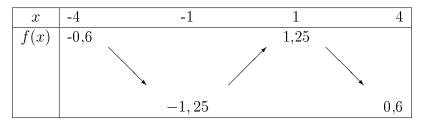
## Exemple:

On considère la fonction f suivante définie sur [-4; 4] dont la représentation graphique est la suivante :





La fonction semble, d'après la représentation graphique, admettre le tableau de variation suivant :



## 2 Maximum, minimum

#### Définition:

Soit f une fonction définie sur un intervalle I. Soit  $x_0$  un réel de l'intervalle I.

- La fonction f admet un  $maximum\ M$  en  $x_0$  sur l'intervalle I lorsque  $M = f(x_0)$  et pour tout nombre x de I  $f(x) \leq M$ .
- La fonction f admet un minimum m en  $x_0$  sur l'intervalle I lorsque  $m = f(x_0)$  et pour tout nombre x de I f(x) > m avec  $m = f(x_0)$ .
- On dit que la fonction f admet un extremum sur I si elle admet un maximum ou un minimum.

## 3 Résolutions graphiques d'inéquations et signe d'une fonction

## 3.1 Compléments sur les intervalles

#### Définitions:

Soient a et b deux nombres réels avec a inférieur strictement à b.

- $[a; +\infty[$  est l'ensemble des réels x tels que  $x \ge a$ .
- ]  $-\infty$ ; a[ est l'ensemble des réels x tels que x < a.

$$]-\infty;b[$$

#### Définition:

Soient I et J deux intervalles.

- L'intersection de I et J notée  $I \cap J$  est l'ensemble des nombres appartenant à la fois à I et à J.
- La réunion de I et J notée  $I \cup J$  est l'ensemble des nombres appartenant à I ou (inclusif) à J.
- Lorsque les intervalles I et J n'ont aucun point commun, leur intersection est *l'ensemble vide* noté  $\emptyset$ . On dit aussi que les intervalles sont disjoints.



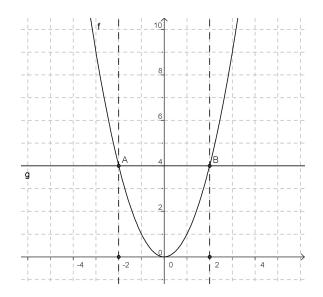
## 3.2 Résolution graphique d'inéquations

## Propriété:

Soit k un nombre réel, f une fonction et  $\mathcal{C}_f$  sa représentation graphique dans un repère. Les solutions de l'inéquation  $f(x) \leq k$  (respectivement  $f(x) \geq k$ ) sont les abscisses des points de la courbe situés en dessous (respectivement au dessus) de la droite parallèle à l'axe des abscisses et passant par le point de coordonnées (0; k).

#### Exemple:

Sur la figure ci-contre, est représentée la fonction f définie par  $f(x) = x^2$ .



L'inéquation  $f(x) \le 4$  a pour ensemble solution [-2; 2].

L'inéquation  $f(x) \ge 4$  a pour ensemble solution  $]-\infty;-2] \cup [2;+\infty[$ .

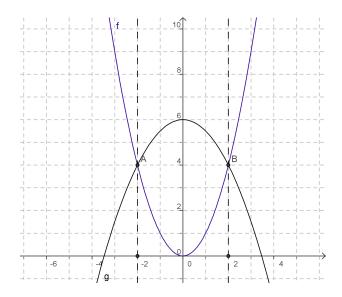
## Propriété:

Soient f et g deux fonctions et  $\mathcal{C}_f$  et  $\mathcal{C}_g$  leur représentation graphique dans un repère. Les solutions de l'inéquation  $f(x) \leq g(x)$  sont les abscisses des points de la courbe  $\mathcal{C}_f$  situés en dessous des points de  $\mathcal{C}_g$  de même abscisse.

## Exemple:

Les courbes ci-contre sont les représentations graphiques des fonctions f et g définies par  $f(x) = x^2$  et  $g(x) = -\frac{1}{2}x^2 + 6$ .





L'ensemble des solutions de l'inéquation f(x) < g(x) est l'ensemble ] -2; 2[.

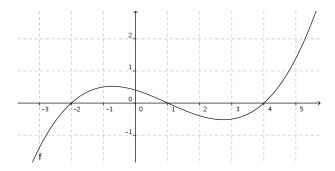
## 3.3 Signe d'une fonction

#### Définition:

Soit f une fonction définie sur un intervalle I. On dit que f est :

- positive sur I si pour tout réel x de I,  $f(x) \ge 0$ ;
- négative sur I si pour tout réel x de I,  $f(x) \le 0$ .

## Exemple:



Pour visualiser le signe d'une fonction, on utilise un tableau de signes :

| x    | $-\infty$ |   | -2 |   | 1 |   | 4 |   | $+\infty$ |
|------|-----------|---|----|---|---|---|---|---|-----------|
| f(x) |           | - | 0  | + | 0 | - | 0 | + |           |

