Fonction carré

Fonction carré

F. Gaudon

http://mathsfg.net.free.fr

9 avril 2012

Étude de la fonction carré

Résolution d'équations

Définition

La fonction carré est définie sur ℝ par

$$f(x) = x^2$$

Variations:

La fonction carré est :

- décroissante sur $]-\infty;0];$
- croissante sur $[0; +\infty[$.

Elle admet un minimum égal à 0 en 0.

X	$-\infty$		0		$+\infty$
f(x)		¥	0	7	

Preuve:

- Soient x_1 et x_2 deux réels tels que $0 \le x_1 \le x_2$. Alors en multipliant par x_1 qui est positif on obtient $0 \le x_1^2 \le x_1 x_2$ et en multipliant par x_2 qui est positif on a $0 \le x_1 x_2 \le x_2^2$ donc finalement $x_1^2 \le x_2$ ce qui signifie que la fonction carré est croissante sur $[0; +\infty[$.
- Soient x₁ et x₂ deux réels tels que x₁ ≤ x₂ ≤ 0. Alors en multipliant par x₁ qui est négatif on obtient x₁² ≥ x₁x₂ et en multipliant par x₂ qui est négatif on a x₁x₂ ≥ x₂² donc finalement x₁² ≥ x₂ ce qui signifie que la fonction carré est décroissante sur [0; +∞[.

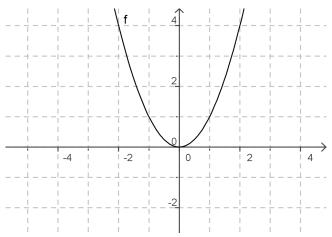
Signe:

La fonction carré est positive sur] $-\infty$; $+\infty$ [.

Χ	$-\infty$		0		$+\infty$
x^2		+	0	+	

Représentation graphique :

La représentation graphique de la fonction carré dans un repère du plan est appelée *parabole*.



Remarque:

Pour tout réel x, on a f(-x) = f(x), on dit que la fonction est paire. Sa représentation graphique est symétrique par rapport à l'axe des ordonnées dans un repère orthogonal.

Propriété

- Pour tout réel k > 0, l'équation $x^2 = k$ admet deux solutions \sqrt{k} et $-\sqrt{k}$.
- Pour tout réel k < 0, l'équation $x^2 = k$ n'admet aucune solution réelle.
- L'équation $x^2 = 0$ admet pour unique solution 0.

Fonction carré

Propriété:

Seul le cas où k>0 n'est pas immédiat. On suppose donc k>0. L'équation s'écrit alors $x^2-k=0$ c'est à dire $x^2-\sqrt{k}^2=0$ ce qui équivaut à $(x-\sqrt{k})(x+\sqrt{k})=0$ d'après l'identité remarquable $a^2-b^2=(a-b)(a+b)$. Le porduit est nul si et seulement si l'un des facteurs est nul, c'est à dire $x-\sqrt{k}=0$ ou $x+\sqrt{k}=0$ ce qui justifie le résultat.