Vecteurs, cours pour la classe de seconde

F.Gaudon

2 septembre 2009

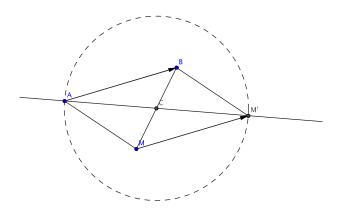
Table des matières

1	Notions de translation et de vecteurs	2
2	Somme de vecteurs	3
3	Coordonnées de vecteurs	5

1 Notions de translation et de vecteurs

Définition:

Soient A et B deux points du plan. Á tout point M du plan, on associe l'unique point M' tel que [AM'] et [BM] ont le même milieu. On dit que M' est l'image de M par la translation de vecteur \overrightarrow{AB} .



Propriété:

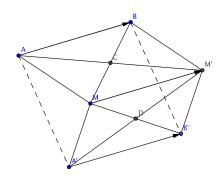
M' est l'image de M par la translation de vecteur \overrightarrow{AB} si et seulement si ABM'M est un parallélogramme (éventuellement aplati).

Preuve:

Immédiat puisqu'un quadrilatère est un parallélogramme si et seulement si ses diagonales se coupent en leur milieu.

Remarques:

- L'image de A par la translation de vecteur \overrightarrow{AB} est B.
- Soient A,B, A' et B' quatre points du plan. Alors la translation de vecteur \overrightarrow{AB} et la translation de vecteur $\overrightarrow{A'B'}$ sont égales si tout point M du plan a la même image par la translation de vecteur \overrightarrow{AB} et par la translation de vecteur $\overrightarrow{A'B'}$.



Propriété et définition :

Soient A,B,A' et B' quatre points du plan. Alors la translation de vecteur \overrightarrow{AB} et la translation de vecteur A'B' sont égales si et seulement ABB'A' est un parallélogramme (éventuellement aplati). On dit alors que les vecteurs \overrightarrow{AB} et $\overrightarrow{A'B'}$ sont égaux et on écrit $\overrightarrow{AB} = \overrightarrow{A'B'}$. On notera aussi \overrightarrow{u} le vecteur égal aux vecteurs \overrightarrow{AB} et $\overrightarrow{A'B'}$.

Preuve:

- Si les translations sont égales, alors tout point M a la même image par la translation de vecteur \vec{AB} et par la translation de vecteur $\vec{A'B'}$. En particulier, le point A a pour image B par la translation de vecteur $\vec{A'B'}$ d'où $\vec{ABB'A'}$ est un parallélogramme.
- Supposons réciproquement que ABB'A' est un parallélogramme. Les droites (AB) et (A'B') sont donc parallèles et les côtés AB et A'B' sont égaux. Alors pour tout point M du plan, d'image M' par la translation de vecteur AB, MM'BA est un parallélogramme, c'est à dire que les côtés AB et MM' sont égaux et que les droites (AB) et (MM') sont parallèles. Les droites (A'B') et (MM') sont donc parallèles et les segments [A'B'] et [MM'] ont même longueur. Le quadrilatère A'B'M'M a donc deux côtés opposés parallèles et de même longueur, c'est donc un parallélogramme, ce qui montre que M' est aussi l'image de M par la translation de vecteur A'B'. Ceci étant vrai pour tous les points M du plan, les deux translations sont donc égales.

Remarque:

Deux vecteurs \overrightarrow{AB} et $\overrightarrow{A'B'}$ sont donc égaux si et seulement si les trois conditions suivantes sont vraies :

- les droites (AB) et (A'B') sont parallèles : ont dit qu'elles ont même direction;
- le sens de A vers B est le même que de A' vers B';
- les segments [AB] et [A'B'] ont même longueur.

2 Somme de vecteurs

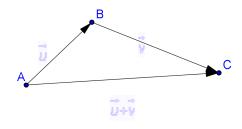
Définition:

Soient \vec{u} et \vec{v} deux vecteurs et A, B et C trois points tels que $\vec{u} = \vec{AB}$ et $\vec{v} = \vec{BC}$.

La somme des vecteurs \vec{u} et \vec{v} , notée $\vec{u} + \vec{v}$, est le vecteur \vec{AC} .

Propriété (relation de CHASLES) :

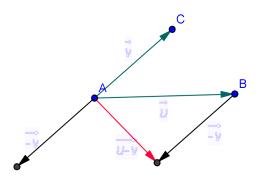
Pour tous les points A, B et C on a donc $\vec{AB} + \vec{BC} = \vec{AC}$.



Définition:

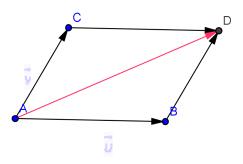
Soient \vec{u} , \vec{v} deux vecteurs et A, B et C trois points tels que $\vec{u} = \vec{AB}$.

- On appelle *vecteur nul* le vecteur noté $\vec{0}$ et défini par $\vec{0} = \vec{AA} = \vec{BB}$;
- on appelle *vecteur opposé* au vecteur \vec{u} , le vecteur noté $-\vec{u}$ tel que $-\vec{u} = \vec{BA}$;
- on appelle différence du vecteur \vec{u} par le vecteur \vec{v} le vecteur noté $\vec{u} \vec{v}$ égale à $\vec{u} + (-\vec{v})$.



Règle du parallélogramme :

Soient A, B, C et D quatre points non alignés. $\vec{AB} + \vec{AC} = \vec{AD}$ si et seulement si ABDC est un parallélogramme.



Preuve:

- Si ABDC est un parallélogramme, alors $\vec{AC} = \vec{BD}$ donc $\vec{AB} + \vec{AC} = \vec{AB} + \vec{BD} = \vec{AD}$.
- Si $\vec{AB} + \vec{AC} = \vec{AD}$, on a $\vec{BA} + \vec{AB} + \vec{AC} = \vec{BA} + \vec{AD}$ donc $\vec{AC} = \vec{BA} + \vec{AD}$ et $\vec{AC} = \vec{BD}$ ce qui signifie que \vec{ABDC} est un parallélogramme.

3 Coordonnées de vecteurs

Définition:

Soient A et B deux points de coordonnées $(x_A; y_A)$ et $(x_B; y_B)$ dans un repère $(O; \vec{i}; \vec{j})$. Alors les coordonnées de \vec{AB} sont $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

Propriété:

Soit $(O; \vec{i}; \vec{j})$ un repère et soit \vec{u} un vecteur. Alors pour tous les points A, B tels que $\vec{u} = \vec{AB}$, les coordonnées des vecteurs \vec{u} et \vec{AB} sont égales.

Algorithmique:

Algorithme de calcul des coordonnées (xAB; yAB) du vecteur \overrightarrow{AB} dont les points A et B ont pour coordonnées (xA; yA) et (xB; yB):

```
Demander xA, yA
Demander xB, yB
xB-xA \rightarrow xAB
yB-yA -> yAB
Afficher xAB, yAB
```

Propriétés:

Soit $(O; \vec{i}; \vec{j})$ un repère du plan. On considère deux vecteurs \vec{u} et \vec{v} de coordonnées (x; y) et (x'; y').

- $\vec{u} = \vec{v}$ si et seulement si x = x' et y = y';
- $-\vec{u}$ a pour coordonnées $\begin{pmatrix} -x \\ -y \end{pmatrix}$ $\vec{u} + \vec{v}$ a pour coordonnées $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$;

Preuve:

- Conséquence de la propriété précédente;
- soient A et B sont deux points tels que $\vec{u} = \vec{AB}$. Les coordonnées de \vec{u} sont donc $\begin{pmatrix} x_B x_A \\ y_B y_A \end{pmatrix}$. Or $\vec{BA} = -\vec{u}$ et a pour coordonnées $\begin{pmatrix} x_A x_B \\ y_A y_B \end{pmatrix}$ qui sont opposées à celles de \vec{u} ;
- Soient A, B et C trois points tels que $\vec{u} = \vec{AB}$ et $\vec{v} = \vec{BC}$. D'après la relation de Chasles on peut écrire que $\vec{u} + \vec{v} = \vec{AB} + \vec{BC} = \vec{AC}$. Or les alscisses de \vec{AB} et \vec{BC} sont respectivement $x_B x_A$ et $x_C x_B$. Leur somme est $x_B x_A + x_C x_B = x_C x_A$ qui est l'abscisse de \vec{AC} . De même pour les ordonnées.

Algorithmique:

Algorithme de test de l'égalité de deux vecteurs $\vec{u_1}$ et $\vec{u_2}$ dont les coordonnées (x1, y1) et (x2; y2) sont données :

```
Demander x1, y1
Demander x2, y2
Si (x1=x2) et (y1=y2) alors
    Afficher "Les deux vecteurs sont égaux"
sinon
    Afficher "Les deux vecteurs ne sont pas égaux"
```

